你的位置:首頁(yè) > 測(cè)試測(cè)量 > 正文
模擬開關(guān)和多路復(fù)用器基礎(chǔ)參數(shù)介紹
發(fā)布時(shí)間:2020-04-15 來(lái)源:現(xiàn)場(chǎng)應(yīng)用工程師 蘇智超 Rock Su 責(zé)任編輯:wenwei
【導(dǎo)讀】在測(cè)試測(cè)量相關(guān)應(yīng)用中,模擬開關(guān)和多路復(fù)用器有著非常廣泛的應(yīng)用,例如運(yùn)放的增益調(diào)節(jié)、ADC分時(shí)采集多路傳感器信號(hào)等等。雖然它的功能很簡(jiǎn)單,但是仍然有很多細(xì)節(jié),需要大家在使用的過(guò)程中注意。所以,在這里為大家介紹一下模擬開關(guān)和多路復(fù)用器的基礎(chǔ)參數(shù)。
在開始介紹基礎(chǔ)的參數(shù)之前,我們有必要介紹一下模擬開關(guān)和多路復(fù)用器的基本單元MOSFET開關(guān)的基本結(jié)構(gòu)。
一. MOSFET開關(guān)的架構(gòu)
MOSFET開關(guān)常見的架構(gòu)有3種,如圖1所示。
1)NFET。
2)NFET和PFET。
3)帶有電荷泵的NFET。
三種架構(gòu)各有特點(diǎn),詳細(xì)的介紹,可以參考《TI Precision Labs - Switches and Multiplexers》培訓(xùn)視頻和《Selecting the Right Texas Instruments Signal Switch》應(yīng)用文檔。本文主要基于NFET和PFET架構(gòu)展開介紹和仿真,但是涉及到的概念在三種架構(gòu)中都是適用的。
圖 1 MOSFET開關(guān)結(jié)構(gòu)
另外,需要注意的是,此處的MOSFET結(jié)構(gòu),S和D是對(duì)稱的,所以在功能上是可以互換的,也因此,開關(guān)是雙向的,為了便于討論,我們統(tǒng)一把S極作為輸入。
二.模擬開關(guān)和多路復(fù)用器直流參數(shù)介紹
1. 導(dǎo)通電阻 On Resistance
(1). 定義
圖 2 On Resistance 定義
(2). 特點(diǎn)
1) 隨輸入信號(hào)電壓而改變:當(dāng)芯片的供電電壓固定時(shí),對(duì)于NMOS而言,S級(jí)的電壓越高,導(dǎo)通電阻越來(lái)越大,對(duì)于PMOS而言,S級(jí)的電壓越高,導(dǎo)通電阻越來(lái)越小。
圖 3 導(dǎo)通電阻隨輸入信號(hào)電壓變化的曲線
2) 導(dǎo)通電阻的阻值與溫度有關(guān):當(dāng)VDD和VSS固定不變時(shí),隨著溫度的升高,導(dǎo)通電阻的曲線整體向上平移。
圖 4 導(dǎo)通電阻隨溫度變化的曲線
3) 導(dǎo)通電阻的平坦度:On-resistance flatness
圖 5 On-resistance flatness
在一定的輸入電壓范圍內(nèi),導(dǎo)通電阻的最大值與最小值的差稱為導(dǎo)通電阻的平坦度,這個(gè)值越大,說(shuō)明導(dǎo)通電阻的變化幅度越大。
(3). 影響
在這里,我們通過(guò)一個(gè)仿真實(shí)例來(lái)觀察一下導(dǎo)通電阻及平坦度對(duì)于系統(tǒng)的影響,如圖6。為了更容易地觀察到影響,我們選擇設(shè)置R1和R2為100?。
圖 6 MUX36S08仿真電路
圖 7 輸入及輸出波形
從仿真的結(jié)果我們可以看出:
1) 輸出電壓并不是我們輸入電壓乘以放大比例后的結(jié)果,這是因?yàn)橛袑?dǎo)通電阻的存在。
2) 輸出電壓隨輸入電壓的并不是線性關(guān)系,這是因?yàn)镽on隨著Vin在變化,會(huì)在輸出端引入非線性誤差。所以,Ron的平坦度越小,輸出的非線性誤差越小。
2.漏電流 Leakage current
(1). 定義
1) Source off-leakage current: 在開關(guān)斷開時(shí),從源極流入或流出的電流稱為 ,如圖8。
2) Drain off-leakage current: 在開關(guān)斷開時(shí),從漏極流入或流出的電流稱為 ,如圖8
3) On-leakage current: 當(dāng)開關(guān)閉合時(shí),從漏極流入或流出的電流稱為 ,如圖8。
圖 8 漏電流定義
(2). 特點(diǎn)
漏電流隨溫度變化劇烈。
圖 9 漏電流隨溫度變化的曲線
(3). 影響
在很多數(shù)據(jù)采集系統(tǒng)中,接入MUX前的傳感器有可能是高阻抗的傳感器。這時(shí),漏電流的影響就會(huì)凸顯出來(lái)。
例如,在圖10的仿真中,輸入源有1M?的源阻抗,我們對(duì)這個(gè)電阻進(jìn)行直流參數(shù)掃描,觀察它從1M?變化至10M?時(shí),對(duì)輸出電壓的影響,結(jié)果可以看到,漏電流通過(guò)傳感器的內(nèi)阻會(huì)給輸出電壓帶來(lái)一個(gè)直流誤差。所以,在為高輸出阻抗的傳感器選擇MUX時(shí),要盡可能選取低漏電流的芯片。
圖 10 漏電流仿真電路
圖 11 漏電流仿真結(jié)果
三. 模擬開關(guān)和多路復(fù)用器動(dòng)態(tài)參數(shù)介紹
1. 導(dǎo)通電容 On Capacitance
(1). 定義
CS和CD代表了開關(guān)在斷開時(shí)的源極和漏極電容。當(dāng)開關(guān)導(dǎo)通時(shí),CON等于源極的電容和漏極的電容之和,如圖12。
圖 12 On Capacitance
(2). 影響
圖 13 MUX36S08 示例
當(dāng)MUX在不同通道之間切換時(shí),CD也會(huì)隨著通道的切換被充電或者放電。例如,當(dāng)S1閉合時(shí),CD會(huì)被充電至V1。那么此時(shí)CD上的電荷QD1:
當(dāng)MUX從S1切換至S2時(shí),CD會(huì)被充電至V2。那么此時(shí)CD上的電荷QD2:
那么兩次CD上的電荷差就需要V2來(lái)提供,所以這時(shí)候,MUX輸出就會(huì)需要一定的時(shí)間來(lái)穩(wěn)定。
對(duì)于一個(gè)N-bit的ADC:
K其實(shí)是代表RC電路中,電壓到達(dá)目標(biāo)誤差以內(nèi)時(shí)所需要的時(shí)間常數(shù)的數(shù)量,例如10-bit accuracy (LSB % FS= 0.0977), K= -ln (0.0977/100)=6.931。
接下來(lái)用一個(gè)仿真來(lái)說(shuō)明這種現(xiàn)象:
為了更明顯地觀察到這種現(xiàn)象,在Vout 端加入一個(gè)電容C1,可以理解為增加了CD,也可以理解為負(fù)載電容和CD的并聯(lián)。
圖 14 On Capacitance對(duì)輸出影響的仿真示例電路
當(dāng)時(shí),整個(gè)回路的時(shí)間常數(shù)較大,需要更長(zhǎng)時(shí)間穩(wěn)定,所以在開關(guān)導(dǎo)通20uS之后,輸出電壓仍然沒(méi)有穩(wěn)定到信號(hào)源的電壓。
圖 15 C1=50pF 仿真結(jié)果
當(dāng)時(shí),整個(gè)回路的時(shí)間常數(shù)較小,需要較短時(shí)間穩(wěn)定,所以在開關(guān)導(dǎo)通20uS之內(nèi),輸出電壓穩(wěn)定到了信號(hào)源的電壓。
圖 16 C1=10pF 仿真結(jié)果
2. 注入電荷 Charge Injection
(1). 定義
注入電荷指的是從控制端EN耦合至輸出端的電荷。
(2). 影響
因?yàn)樵陂_關(guān)導(dǎo)通的通道上,缺乏消耗這部分電荷的通路,所以當(dāng)這部分電荷流入漏極電容和輸出電容上時(shí),會(huì)在輸出產(chǎn)生一個(gè)電壓誤差。
圖 17 Charge Injection過(guò)程示意圖
過(guò)程如下:
當(dāng)在EN端有一個(gè)階躍信號(hào)時(shí),這個(gè)階躍電壓會(huì)通過(guò)柵極和漏極之間的寄生電容CGD,耦合至輸出端,輸出電壓的改變?nèi)Q于注入電荷QINJ,CD和CL。
所以,當(dāng)注入的電荷越小時(shí),在輸出端引入的誤差會(huì)越小。
但同時(shí),要注意到,注入電荷是一個(gè)與供電電壓、輸入信號(hào)都有關(guān)的一個(gè)參數(shù)。因此,當(dāng)輸入信號(hào)的電壓在變化時(shí),會(huì)在輸出端產(chǎn)生一個(gè)非線性的誤差。所以在選在MUX時(shí),除了要注意charge injection的值以外,也要注意charge injection在輸入范圍內(nèi)的平坦度。
圖 18 MUX36S08 charge injection 曲線
TMUX6104精密模擬多路復(fù)用器使用特殊的電荷注入消除電路,可將源極-漏極電荷注入在VSS = 0 V時(shí)降至-0.35 pC,在整個(gè)信號(hào)范圍內(nèi)降至-0.41 pC。
圖 19 TMUX6104 Charge Injection 曲線
3. 帶寬Bandwidth
(1). 定義
當(dāng)開關(guān)打開時(shí),在漏極的輸出刪減至源極輸入衰減3dB時(shí)的頻率,如圖20所示。
圖 20 帶寬定義
(2). 計(jì)算方法
圖 21 簡(jiǎn)化的MUX內(nèi)部的開關(guān)模型
為了簡(jiǎn)化分析,我們忽略RS和CS。根據(jù)圖21中的阻容網(wǎng)絡(luò),我們可以寫出該電路的傳遞函數(shù):
其中,3dB cut off frequency:
根據(jù)這個(gè)公式,結(jié)合MUX和負(fù)載的參數(shù),我們就可以算出來(lái)在當(dāng)前條件下MUX的帶寬了。
4. 通道間串?dāng)_ Channel to Channel crosstalk
(1). 定義
圖 22 通道間串?dāng)_示意圖
通道間串?dāng)_定義為當(dāng)已知信號(hào)施加到導(dǎo)通通道的源極引腳時(shí),在截止通道的源極引腳上出現(xiàn)的電壓。
(2). 特點(diǎn)
圖 23 簡(jiǎn)化的MUX內(nèi)部的開關(guān)模型及通道間串?dāng)_隨信號(hào)頻率的變化
Channel to Channel crosstalk是和頻率有關(guān)的一種現(xiàn)象。主要是由于關(guān)斷狀態(tài)下寄生電容導(dǎo)致的。有時(shí),也會(huì)由于布局技術(shù)不佳而引入了寄生電容,表現(xiàn)為串?dāng)_。
CSS表示兩個(gè)輸入通道之間的寄生電容。 這可能是傳輸信號(hào)的兩個(gè)輸入走線之間的電容,或者是多路復(fù)用器的兩個(gè)輸入引腳之間的電容。
在較低頻率的時(shí)候,從S1到OUTPUT的阻抗是RON ,因?yàn)镾2是斷開的,從S2到OUTPUT的阻抗非常高。隨著施加到S1的輸入信號(hào)的頻率增加,寄生電容CSD的阻抗變得更低,并在S2引入了一部分S1的輸入信號(hào)。
相同的原理,寄生電容CSS隨頻率的增加也會(huì)將一部分輸入信號(hào)直接耦合到斷開的通道S2。
減少雜散電容的電路板布局技術(shù)也會(huì)有助于通道間的串?dāng)_問(wèn)題。
5. 關(guān)斷隔離 Off isolation
(1). 定義
關(guān)斷隔離定義為當(dāng)在關(guān)閉通道的源極引腳上施加已知信號(hào)時(shí)在多路復(fù)用器輸出引腳上引入的電壓。
圖 24 關(guān)斷隔離示意圖
(2). 特點(diǎn)
圖 25 簡(jiǎn)化的MUX內(nèi)部的開關(guān)模型及關(guān)斷隔離隨信號(hào)頻率的變化
像串?dāng)_一樣,關(guān)斷隔離也是一種與頻率相關(guān)的現(xiàn)象,由于模擬開關(guān)或多路復(fù)用器的OFF狀態(tài)寄生電容CSD而發(fā)生。而開關(guān)在截止?fàn)顟B(tài)的寄生電容又取決于多個(gè)因素,例如器件封裝、引出線、制造工藝以及電路板布局技術(shù)。
較低的負(fù)載電阻將產(chǎn)生更好的OFF隔離,但由于導(dǎo)通電阻的存在,如果負(fù)載電阻過(guò)低,會(huì)引入失真。 較大的負(fù)載電容和漏極電容也將有助于更好的OFF隔離,但會(huì)限制多路復(fù)用器的帶寬。
關(guān)斷隔離和串?dāng)_規(guī)范都會(huì)分為相鄰和不相鄰?fù)ǖ纼深悺?/div>
推薦閱讀:
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過(guò)基本描述找到需要的電容?
技術(shù)文章更多>>
- 聯(lián)發(fā)科與NVIDIA合作 為NVIDIA 個(gè)人AI超級(jí)計(jì)算機(jī)設(shè)計(jì)NVIDIA GB10超級(jí)芯片
- 國(guó)產(chǎn)工業(yè)核心零部件崛起背后,華丞電子的智慧與突破
- 歐盟新規(guī)實(shí)施:新車必須安裝
- 破局時(shí)效,跨越速運(yùn)領(lǐng)航零擔(dān)快運(yùn)新征途
- 瑞典名企Roxtec助力構(gòu)建安全防線
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
云計(jì)算
云母電容
真空三極管
振蕩器
振蕩線圈
振動(dòng)器
振動(dòng)設(shè)備
震動(dòng)馬達(dá)
整流變壓器
整流二極管
整流濾波
直流電機(jī)
智能抄表
智能電表
智能電網(wǎng)
智能家居
智能交通
智能手機(jī)
中電華星
中電器材
中功率管
中間繼電器
周立功單片機(jī)
轉(zhuǎn)換開關(guān)
自耦變壓器
自耦調(diào)壓器
阻尼三極管
組合開關(guān)
友情鏈接(QQ:317243736)
我愛(ài)方案網(wǎng) ICGOO元器件商城 創(chuàng)芯在線檢測(cè) 芯片查詢 天天IC網(wǎng) 電子產(chǎn)品世界 無(wú)線通信模塊 控制工程網(wǎng) 電子開發(fā)網(wǎng) 電子技術(shù)應(yīng)用 與非網(wǎng) 世紀(jì)電源網(wǎng) 21ic電子技術(shù)資料下載 電源網(wǎng) 電子發(fā)燒友網(wǎng) 中電網(wǎng) 中國(guó)工業(yè)電器網(wǎng) 連接器 礦山設(shè)備網(wǎng) 工博士 智慧農(nóng)業(yè) 工業(yè)路由器 天工網(wǎng) 乾坤芯 電子元器件采購(gòu)網(wǎng) 亞馬遜KOL 聚合物鋰電池 工業(yè)自動(dòng)化設(shè)備 企業(yè)查詢 工業(yè)路由器 元器件商城 連接器 USB中文網(wǎng) 今日招標(biāo)網(wǎng) 塑料機(jī)械網(wǎng) 農(nóng)業(yè)機(jī)械 中國(guó)IT產(chǎn)經(jīng)新聞網(wǎng) 高低溫試驗(yàn)箱
?
關(guān)閉
?
關(guān)閉