中文在线中文资源,色鲁97精品国产亚洲AV高,亚洲欧美日韩在线一区,国产精品福利午夜在线观看

你的位置:首頁 > 測試測量 > 正文

開關模式電源電流檢測——第二部分:何處放置檢測電阻

發布時間:2021-02-24 來源:Henry Zhang和Kevin B. Scott 責任編輯:wenwei

【導讀】電流檢測電阻的位置連同開關穩壓器架構決定了要檢測的電流。檢測的電流包括峰值電感電流、谷值電感電流(連續導通模式下電感電流的最小值)和平均輸出電流。檢測電阻的位置會影響功率損耗、噪聲計算以及檢測電阻監控電路看到的共模電壓。

放置在降壓調節器高端
 
對于降壓調節器,電流檢測電阻有多個位置可以放置。當放置在頂部MOSFET的高端時(如圖1所示),它會在頂部MOSFET導通時檢測峰值電感電流,從而可用于峰值電流模式控制電源。但是,當頂部MOSFET關斷且底部MOSFET導通時,它不測量電感電流。
 
開關模式電源電流檢測——第二部分:何處放置檢測電阻
圖1.帶高端RSENSE的降壓轉換器
 
在這種配置中,電流檢測可能有很高的噪聲,原因是頂部MOSFET的導通邊沿具有很強的開關電壓振蕩。為使這種影響最小,需要一個較長的電流比較器消隱時間(比較器忽略輸入的時間)。這會限制最小開關導通時間,并且可能限制最小占空比(占空比 = VOUT/VIN)和最大轉換器降壓比。注意在高端配置中,電流信號可能位于非常大的共模電壓(VIN)之上。
放置在降壓調節器低端
 
圖2中,檢測電阻位于底部MOSFET下方。在這種配置中,它檢測谷值模式電流。為了進一步降低功率損耗并節省元件成本,底部FET RDS(ON)可用來檢測電流,而不必使用外部電流檢測電阻RSENSE。
 
開關模式電源電流檢測——第二部分:何處放置檢測電阻
圖2.帶低端RSENSE的降壓轉換器
 
這種配置通常用于谷值模式控制的電源。它對噪聲可能也很敏感,但在這種情況下,它在占空比較大時很敏感。谷值模式控制的降壓轉換器支持高降壓比,但由于其開關導通時間是固定/受控的,故最大占空比有限。
 
降壓調節器與電感串聯
 
圖3中,電流檢測電阻RSENSE與電感串聯,因此可以檢測連續電感電流,此電流可用于監測平均電流以及峰值或谷值電流。所以,此配置支持峰值、谷值或平均電流模式控制。
 
開關模式電源電流檢測——第二部分:何處放置檢測電阻
圖3.RSENSE與電感串聯
 
這種檢測方法可提供最佳的信噪比性能。外部RSENSE通常可提供非常準確的電流檢測信號,以實現精確的限流和均流。但是,RSENSE也會引起額外的功率損耗和元件成本。為了減少功率損耗和成本,可以利用電感線圈直流電阻(DCR)檢測電流,而不使用外部RSENSE。
 
放置在升壓和反相調節器的高端
 
對于升壓調節器,檢測電阻可以與電感串聯,以提供高端檢測(圖4)。
 
開關模式電源電流檢測——第二部分:何處放置檢測電阻
圖4.帶高端RSENSE的升壓轉換器
 
升壓轉換器具有連續輸入電流,因此會產生三角波形并持續監測電流。
 
放置在升壓和反相調節器的低端
 
檢測電阻也可以放在底部MOSFET的低端,如圖5所示。此處監測峰值開關電流(也是峰值電感電流),每半個周期產生一個電流波形。MOSFET開關切換導致電流信號具有很強的開關噪聲。
 
開關模式電源電流檢測——第二部分:何處放置檢測電阻
圖5.帶低端RSENSE的升壓轉換器
 
SENSE電阻放置在升降壓轉換器低端或與電感串聯
 
圖6顯示了一個4開關升降壓轉換器,其檢測電阻位于低端。當輸入電壓遠高于輸出電壓時,轉換器工作在降壓模式;當輸入電壓遠低于輸出電壓時,轉換器工作在升壓模式。在此電路中,檢測電阻位于4開關H橋配置的底部。器件的模式(降壓模式或升壓模式)決定了監測的電流。
 
開關模式電源電流檢測——第二部分:何處放置檢測電阻
圖6.RSENSE位于低端的升降壓轉換器
 
在降壓模式下(開關D一直導通,開關C一直關斷),檢測電阻監測底部開關B電流,電源用作谷值電流模式降壓轉換器。
 
在升壓模式下(開關A一直導通,開關B一直關斷),檢測電阻與底部MOSFET (C)串聯,并在電感電流上升時測量峰值電流。在這種模式下,由于不監測谷值電感電流,因此當電源處于輕負載狀態時,很難檢測負電感電流。負電感電流意味著電能從輸出端傳回輸入端,但由于這種傳輸會有損耗,故效率會受損。對于電池供電系統等應用,輕負載效率很重要,這種電流檢測方法不合需要。
 
圖7電路解決了這個問題,其將檢測電阻與電感串聯,從而在降壓和升壓模式下均能連續測量電感電流信號。由于電流檢測RSENSE連接到具有高開關噪聲的SW1節點,因此需要精心設計控制器IC,使內部電流比較器有足夠長的消隱時間。
 
開關模式電源電流檢測——第二部分:何處放置檢測電阻
圖7.LT8390升降壓轉換器,RSENSE與電感串聯
 
輸入端也可以添加額外的檢測電阻,以實現輸入限流;或者添加在輸出端(如下圖所示),用于電池充電或驅動LED等恒定輸出電流應用。這種情況下需要平均輸入或輸出電流信號,因此可在電流檢測路徑中增加一個強RC濾波器,以減少電流檢測噪聲。
 
上述大多數例子假定電流檢測元件為檢測電阻。但這不是強制要求,而且實際上往往并非如此。其他檢測技術包括使用MOSFET上的壓降或電感的直流電阻(DCR)。這些電流檢測方法在第三部分“電流檢測方法”中介紹。
 
軟件
 
LTspice
 
LTspice®軟件是一款強大、快速、免費的仿真工具、原理圖采集和波形查看器,具有增強功能和模型,可改善開關穩壓器的仿真。
 
LTpowerCAD
 
LTpowerCAD設計工具是一款完整的電源設計工具程序,可顯著簡化電源設計任務。它引導用戶尋找解決方案,選擇功率級元件,提供詳細效率信息,顯示快速環路波特圖穩定性和負載瞬態分析,并可將最終設計導出至LTspice進行仿真。
 
作者簡介
 
Henry Zhang是ADI公司電源產品應用工程總監。他于2001年加入凌力爾特(現為ADI公司一部分),擔任電源應用工程師,開始其職業生涯。他于2004年成為應用部門主管,并于2008年成為應用工程經理。他的團隊支持廣泛的產品和應用,從小尺寸集成功率模塊到大型kW級高功率、高電壓轉換器。除了支持電源應用和新產品開發以外,他的團隊還開發了LTpowerCAD電源設計工具程序。Henry對電源管理解決方案和模擬電路有著廣泛的興趣。他發表了20多篇技術文章,發布了許多研討會和視頻,并有10多項電源專利已獲授權或在申請中。
 
Henry畢業于弗吉尼亞理工學院和弗吉尼亞州布萊克斯堡州立大學,獲得電氣工程碩士和博士學位。聯系方式:henry.zhang@analog.com。
 
Kevin Scott是ADI公司電源產品部門的產品營銷經理,負責管理升壓、升降壓和隔離轉換器、LED驅動器和線性穩壓器。他曾擔任高級戰略營銷工程師,負責制定技術培訓內容,培訓銷售工程師,并撰寫了大量關于公司眾多產品技術優勢的網站文章。他在半導體行業已有 26 年從業經驗,歷任應用、業務管理和營銷職務。
 
Kevin于1987年畢業于美國斯坦福大學,獲得電氣工程學士學位。聯系方式:kevin.scott@analog.com。
 
 
推薦閱讀:
 
安富利與安森美半導體以新開發框架加速物聯網創新進程
IEEE微波理論和技術學會授予Qorvo研究員以2021年杰出青年工程師榮譽稱號
ADI的電池管理系統IC和汽車音頻總線助力沃爾沃全電動XC40 SUV
Maxim I/O集線器助力歐姆龍公司擴展NXR系列IO-Link產線,實現工業4.0
傳導輻射測試中分離共模和差模輻射的實用方法
要采購開關么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

  • <center id="09kry"></center>

  • 主站蜘蛛池模板: 贵港市| 灌云县| 双柏县| 石狮市| 玉田县| 静宁县| 沾益县| 榆中县| 遂平县| 河池市| 洪江市| 太和县| 旅游| 山丹县| 射洪县| 沙湾县| 麻江县| 公安县| 遵义县| 手游| 那坡县| 巩留县| 江源县| 饶河县| 上栗县| 封丘县| 安仁县| 偃师市| 沂南县| 乐安县| 辉县市| 绥滨县| 黎城县| 宁强县| 马山县| 海盐县| 南城县| 广元市| 肇州县| 汕头市| 清涧县|