中文在线中文资源,色鲁97精品国产亚洲AV高,亚洲欧美日韩在线一区,国产精品福利午夜在线观看

你的位置:首頁 > 互連技術 > 正文

通過轉移到SiC技術來獲得暖通空調更佳的SEER等級

發布時間:2023-01-31 責任編輯:lina

【導讀】由于能源價格在過去12個月中大幅攀升,無論是企業還是消費者都開始感到巨大壓力。在歐洲,2020年至 2021[1]期間,天然氣價格上漲了47%。以德國為例,六分之一的發電量依賴天然氣。而在美國,五分之二的電力來自于天然氣發電。在歐盟[2] ,各種空間和工業供暖消耗了約75%的能源,而制冷需求則占美國總電能消耗的10%[3],因此,對更高效熱泵和空調解決方案的需求日益受到關注。


由于能源價格在過去12個月中大幅攀升,無論是企業還是消費者都開始感到巨大壓力。在歐洲,2020年至 2021[1]期間,天然氣價格上漲了47%。以德國為例,六分之一的發電量依賴天然氣。而在美國,五分之二的電力來自于天然氣發電。在歐盟[2] ,各種空間和工業供暖消耗了約75%的能源,而制冷需求則占美國總電能消耗的10%[3],因此,對更高效熱泵和空調解決方案的需求日益受到關注。


隨著許多國家禁止使用化石燃料燃燒設備,新建筑必須安裝電力暖通空調(HVAC)系統。為了確保這些建筑采用已有的最佳技術,歐洲、北美和中國制定了熱泵和空調的能效標準。北美的SEER和歐盟的ESEER確定了(歐洲)季節能效比。該評級代表了輸出致冷與輸入電能的比率(BTU/瓦特),適應于季節性室外溫度。這樣能夠更好地理解該評級,從SEER 9升級到SEER 13系統可降低30%的功耗。SCOP等級(季節性能系數)適用于加熱裝置。


暖通空調基本實施


無論是空調還是熱泵,HVAC設備都具有基本相同的電氣構造模塊。它們由交流電源供電,需要AC-DC功率因數校正(PFC)模塊,然后是DC-AC逆變器以便為所選電機供電(圖1)。幾十年來,硅功率半導體器件一直是此類系統的首選組件,通常選擇IGBT和MOSFET來構建功率轉換器模塊。但是,由于大多數功率設計的效率通常都要求在95%以上,因此使用硅器件實現更高效率的途徑變得越來越局限。


通過轉移到SiC技術來獲得暖通空調更佳的SEER等級

圖1:空調機組和熱泵的基本電氣實施。


為了解決這一問題,設計工程師越來越多地轉向碳化硅(SiC)器件。寬帶隙(WBG)技術能夠提供更高的效率、開關頻率和設計密度,并且具有更佳的總體性能。通過采用自下而上的設計方法,分階段或一次性地轉移到SiC,可以逐步獲得這些優勢。


采用SiC所能夠實現的效率改進


SiC帶來的第一個變化是在PFC。在連續傳導模式(CCM)升壓轉換器中,硬換向升壓二極管通常是超快型。然而,由于其反向恢復特性,特別是當開關頻率和功率密度提高時,該組件是功率損耗的來源之一。如果改用Wolfspeed 650 V C6D系列SiC肖特基二極管[4] ,可顯著降低這些開關損耗(參見圖2)。此外,殘存的功率損耗隨溫度或電流的變化達到最小。因此,對于以5kHz驅動馬達的4kW壓縮機設計,可獲得約1.5%的效率提高,相當于功耗減少60W。


下一個是優化出現在DC-AC逆變器,可用合適的SiC MOSFET器件來取代硅IGBT。Wolfspeed的650V C3M系列SiC MOSFET[5] 可提供顯著的效率改進,導通和關斷特性損耗達到更低,并且由于導通電阻的改進,使導通損耗更低。在相同的應用條件下,這可以帶來約2.2%的效率提高,相當于節省86W功率。如果綜合考慮采用SiC肖特基二極管帶來的效率改進,總體系統效率提高達到3.6%,即減少146W的損耗。就SEER等級而言,這相當于提高了?SEER。


通過轉移到SiC技術來獲得暖通空調更佳的SEER等級

圖2:用SiC器件替換快速二極管可實現約1.5%的效率提高。此外,將IGBT改換為SiC   MOSFET將使總體效率提高3.6%。


新功率開關意味著新拓撲架構

當然,在現有設計中簡單地用SiC器件來替換硅開關并不能實現這些令人興奮新WBG技術的全部潛力。在高于5kHz的開關頻率下,基于IGBT的設計其效率會降低。在PFC中,應考慮充分利用SiC特性改進以獲得最佳效果的新拓撲架構。最具成本效益的PFC拓撲之一是半橋圖騰柱(參見圖3),其中僅用兩個SiC MOSFET和一對PIN二極管來實現,可提供優異的功率密度和高達98.9%的效率。與全橋替代方案相比,其唯一的問題是輕負載效率略低。


無橋圖騰柱PFC需要四個SiC MOSFET,但轉換效率高達99.2%。然而,這一優勢必須與增大的設計復雜性和更高的總體物料清單(BOM)成本進行權衡。


通過轉移到SiC技術來獲得暖通空調更佳的SEER等級

圖3:改變PFC拓撲架構可以充分利用SiC技術的優勢。


用SiC開始設計


當從硅器件轉向SiC時,功率系統設計師需要花時間更好地了解這些技術。由于SiC器件具有在較高頻率下開關的能力、較低的恢復特性以及相對于溫度的穩定性,必須在受控參考應用中操作開關,以準確了解其工作方式。為了支持這一點,Wolfspeed可提供降壓/升壓評估板[6] (KIT-CRD-3DD065P),它具有采用To-247-4封裝的兩個C3M(C3M0060065K)MOSFET和一個300μH電感器(參見圖4),該評估板可在降壓或升壓模式下工作,輸入和輸出電壓高達450 VDC,功率高達2.5 kW。如果選擇其它適用的電感器,則非常適合在高達100 kHz或更高頻率下測量時序、過沖和開關損耗。該套件還配備有設計文件,如BOM和原理圖,以及指導設計師的快速入門視頻。


通過轉移到SiC技術來獲得暖通空調更佳的SEER等級


通過轉移到SiC技術來獲得暖通空調更佳的SEER等級


圖4:降壓/升壓評估板(KIT-CRD-3DD065P)使功率系統設計師能夠將SiC MOSFET快速納入他們的工作。


半橋圖騰柱AC-DC拓撲(CRD-02AD065N)也可進行類似評估,它設計用于180VAC至264VAC輸入,可在高達2.2kW時提供385VDC輸出。這種高效率、80+鈦合金設計采用同樣的C3M0060065K分立SiC MOSFET,同時具有開爾文連接,以克服封裝的寄生效應。該轉換器工作在65 kHz,功率因數>.98,峰值效率為98.5%。


SiC:通往更高效HVAC的最佳路徑


作為SiC MOSFET的發明者,Wolfspeed三十多年來一直在開發這項技術。在此期間,SiC已在該領域積累了超過7萬億小時的運行時間。憑借對WBG技術的堅定承諾,到2024年,對相應制造設施的投資將使產能增加30倍。因此,隨著能源價格上漲,暖通空調制造商更加重視SiC,以實現超越硅IGBT和MOSFET的更高效率,設計師和他們的采購團隊現在可以輕松應對。


由于市場對持續上漲的能源成本和可用半導體技術的擔憂,這一點至關重要。消費者和商業買家都非常關注運營成本,在尋找新的或替代加熱和制冷設備時會參考效率標簽。改用SiC可以使現有設計增加半個SEER等級,而且通過進行完全重新設計,充分利用SiC的優勢,所能夠實現的改進可能會更加顯著。隨著已經能夠提供廣泛的評估平臺,從各個層面分析,功率系統設計師都應該率先開始轉向SiC,以便在激烈的市場競爭之前獲得更多優勢。


[1] https://www.cleanenergywire.org/factsheets/energy-crunch-what-causes-ris...

[2] https://energy.ec.europa.eu/topics/energy-efficiency/heating-and-cooling_en

[3] https://www.eia.gov/tools/faqs/faq.php?id=1174&t=1

[4] https://www.mouser.com/new/wolfspeed/wolfspeed-650V-sic-diodes/

[5] https://www.mouser.com/new/wolfspeed/wolfspeed-650v-sic-mosfets/

[6] https://www.mouser.com/ProductDetail/Wolfspeed/KIT-CRD-3DD065P?qs=GedFDF...

 


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


推薦閱讀:

如何選擇合適可編程交流電源

控制電源啟動及關斷時序

直接數字合成技術(DDS)

基于MPY634的有效值電路設計

高壓放大器將庫侖計數器范圍擴展至±270V

特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

  • <center id="09kry"></center>

  • 主站蜘蛛池模板: 皮山县| 沁水县| 保定市| 新竹市| 文安县| 镇平县| 通城县| 蓬安县| 翼城县| 霍州市| 新晃| 奎屯市| 民乐县| 驻马店市| 星子县| 大兴区| 喜德县| 郑州市| 旬阳县| 鸡西市| 百色市| 辽阳县| 隆昌县| 武胜县| 灵台县| 曲松县| 莫力| 太白县| 金乡县| 南皮县| 小金县| 乌海市| 吴桥县| 黄龙县| 宝清县| 宜章县| 台北县| 奉新县| 中江县| 梁河县| 山东|