你的位置:首頁(yè) > EMC安規(guī) > 正文
專家精講:GaN功率開關(guān)及有哪些EMI影響?
發(fā)布時(shí)間:2015-07-20 責(zé)任編輯:sherry
【導(dǎo)讀】GaN功率開關(guān)的價(jià)值很明顯,效率也比MOSFET來(lái)得好。雖然GaN技術(shù)已問(wèn)世,但我只看到少部分?jǐn)?shù)據(jù)談?wù)撨@些皮秒開關(guān)裝置如何影響產(chǎn)品EMI的發(fā)生。但我相信有更多研究需要去完成EMI會(huì)發(fā)生的后果,至于EMI工程師與顧問(wèn)在未來(lái)幾年也將可望采用GaN組件。
由于這些新電源開關(guān)的快速開關(guān)速度與相關(guān)更高效率,因此我們希望看到他們能適用于開關(guān)模式電源和射頻(RF)功率放大器。他們可廣泛取代現(xiàn)有的金屬氧化物半導(dǎo)體場(chǎng)效晶體管(MOSFET),且具有較低的“On”電阻、更小的寄生電容、更小的尺寸與更快的速度。我已注意到采用這些裝置的新產(chǎn)品,其他應(yīng)用包括電信直流對(duì)直流(DC-DC)、無(wú)線電源(Wireless Power)、激光雷達(dá)(LiDAR)和D型音頻(Class D Audio)。很顯然,任何半導(dǎo)體組件在幾皮秒內(nèi)切換,很可能會(huì)產(chǎn)生大量的電磁干擾(EMI)。為了評(píng)估這些GaN組件,Sandler安排我來(lái)測(cè)試一些評(píng)估板。一塊我選擇測(cè)試的是Efficient Power Conversion的半橋(Half-bridge )1MHz DC-DC降壓轉(zhuǎn)換器EPC9101(圖1),請(qǐng)參考這塊測(cè)試板上的其他信息,以及一些其他的參考部分。
圖1該演示板用于顯示GaN的EMI。該GaN組件被圈定,我會(huì)在L1左側(cè)測(cè)量切換的波形。
該演示板利用8至19伏特(V)電流,并將其轉(zhuǎn)換為1.2伏20安培(A)(圖2),我讓它運(yùn)行在與10奧姆、2瓦(W)負(fù)載、10伏特電壓狀態(tài)。
圖2 半橋DC-DC轉(zhuǎn)換器的電路圖,波形在L1的左端返回處被測(cè)試。
我試圖用一個(gè)羅德史瓦茲(R&S)RT-ZS20 1.5 GHz的單端探頭捕獲邊緣速率(圖3),并探測(cè)L1的切換結(jié)束,不過(guò)現(xiàn)有測(cè)試設(shè)備的帶寬限制,以至于無(wú)法忠實(shí)捕捉。我能擷取到最好的(圖4)是一個(gè)1.5納秒上升時(shí)間(其中,以EMI的角度來(lái)看,是相當(dāng)快的開始!) 為準(zhǔn)確地記錄典型的300~500皮秒邊緣速度將需要30 GHz帶寬,或更高的示波器。
圖3 采用R&S RTE1104示波器和RT-ZS20 1.5 GHz的單端探頭測(cè)量前緣。
圖4 捕獲的上升時(shí)間顯示為217MHz,其顯示最快邊緣速度為1.5納秒,但事實(shí)上,是在帶寬限制下測(cè)量。
[page]
EMI的發(fā)生
雖然沒(méi)能捕捉到實(shí)際的上升時(shí)間,我在217MHz頻率做了評(píng)估提醒鈴聲。正如你稍后將看到的,當(dāng)我們開始在頻域?qū)ふ視r(shí),該諧振在帶寬中產(chǎn)生EMI,并導(dǎo)致一個(gè)峰值。無(wú)論是信號(hào)接腳和接地回路連接到R&S RT-ZS20探頭,路徑都非常短,所以提醒鈴聲并不是由探針造成,而是電路的寄生共振。
接下來(lái),我量測(cè)在電源輸入電纜傳導(dǎo)的EMI,且透過(guò)負(fù)載電阻顯示EMI傳導(dǎo)特征(圖5)。
圖5 用Fischer F-33-1電流探頭進(jìn)行高頻電流的測(cè)試。
圖6顯示,整個(gè)9k~30MHz的傳導(dǎo)發(fā)射頻段有非常高的1MHz諧波,且都發(fā)生在大約9MHz的間隔諧波上,且有些我還不確定其原生處。這些諧波在負(fù)載電阻電路上特別高,我懷疑若沒(méi)有良好質(zhì)量的線性濾波器,這EMI的數(shù)值可能會(huì)使傳導(dǎo)輻射符合性的測(cè)試失敗。
圖6 用Fischer F-33-1電流探頭測(cè)量的電源輸入纜線中的高頻電流(紫線),以及10奧姆負(fù)載電阻(藍(lán)線)。黃線是環(huán)境噪聲位準(zhǔn),在約9 MHz的諧波頂部發(fā)生1 MHz的開關(guān)尖峰突出。從我的經(jīng)驗(yàn)來(lái)看,藍(lán)色線的位準(zhǔn)令人擔(dān)憂,且可能造成傳導(dǎo)輻射測(cè)試的失敗。
然后將帶寬從9KHz拓展到1GHz以便觀察諧波可以到多遠(yuǎn),然而才約600兆赫就開始漸行漸遠(yuǎn)。請(qǐng)參看圖7。
圖7 用Fischer F-33-1電流探頭測(cè)量的電源輸入纜線中的傳導(dǎo)輻射(紫線),以及10奧姆負(fù)載電阻(藍(lán)線),黃線是環(huán)境噪聲測(cè)量。輻射所有的出現(xiàn)都在600MHz,須注意共鳴約在220MHz。
[page]
最后,我用R&S RS H 400-1 H場(chǎng)(H-field)探針(圖8)來(lái)量測(cè)GaN組件附近的近場(chǎng)和通過(guò)負(fù)載電阻器的高頻電流(圖9)。
圖8使用R&S RS h400-1 H場(chǎng)探針測(cè)量接近GaN開關(guān)裝置近場(chǎng)輻射。
圖9 H場(chǎng)探針測(cè)試結(jié)果。黃線是環(huán)境噪聲位準(zhǔn),紫線是GaN組件附近的測(cè)量,藍(lán)線則是在10奧姆的負(fù)載電阻,輻射終于在約800MHz處逐漸減少。
注意(除了所有寬帶噪聲位準(zhǔn),峰值出現(xiàn)在約220 MHz)振鈴頻率(標(biāo)示1),以及在460MHz(標(biāo)示2)的諧振。從過(guò)往的經(jīng)驗(yàn),我喜歡把諧波位準(zhǔn)降到40dBuV顯示行(Display Line),也就是上面幾張屏幕截圖中的綠線。兩個(gè)共振都相當(dāng)接近,并因而導(dǎo)致“紅旗”。
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過(guò)基本描述找到需要的電容?
技術(shù)文章更多>>
- 混合信號(hào)示波器的原理和應(yīng)用
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十)——功率半導(dǎo)體器件的結(jié)構(gòu)函數(shù)
- JFET 共源共柵提高了電流源性能
- 福耀玻璃曹德旺主席蒞臨深圳傲科指導(dǎo)交流并與傲科達(dá)成戰(zhàn)略合作意向
- 京東工業(yè)元器件自營(yíng)服務(wù)商配套能力再升級(jí) 與廣東芯博通達(dá)成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索