【導讀】無線傳感器網絡是由部署在加測區域內大量的廉價微型傳感器節點組成的,它是通過無線通信的方式形成多跳自組織網絡。本文主要講解了四種射頻前端收發機架構及其對應的調制方式,詳細討論了其架構的低功耗是如何實現的。
傳感器節點通常都是由電池供電,并且需要持續工作幾個月甚至幾年,電池一般不能更換。為延長電池的使用壽命,必須降低通信系統的功耗。以前的研究表 明,大部分功率是在模擬和射頻部分消耗的,所以低功耗的無線傳感器網絡的設計主要是降低射頻前端部分的功耗。系統消耗的能量分為傳 輸的能量和電路消耗的能量,在傳統的無線鏈路中傳輸距離較遠(≥10m),傳輸的能量占主要部分,主要強調的是降低傳輸的能量;然而在WSN系統中節點密 集分布,傳輸距離通常小于10m,電路消耗的能量與傳輸的能量相當甚至超過傳輸的能量,這時在系統設計時就要考慮電路消耗的能量。
對A 類功率放大器提出了一種全面的功率模型,文章考慮了數據速率,調制級數,帶寬,信號峰均比(PAR)和誤比特率(BER)等參數的影響,在QAM系統中可 以計算出理論上的功率放大器的功耗。以前的研究都是針對統一的系統架構或調制方式,沒有考慮不同調制方式不同的架構對系統功耗的影響。
本文介紹了四種射頻前端收發機架構及其對應的調制方式,并且詳細討論了各個架構的能耗模型,在此基礎上通過仿真給出適合不同距離和速率的調制方式及收發機架構,對低功耗WSN系統中射頻前端架構的設計具有一定的參考價值。
本文結構安排如下:第二部分介紹了四種收發機射頻前端系統架構,第三部分詳細分析了系統的能量模型,第四部分對仿真結果進行了討論,最后對全文進行了總結。
1、射頻前端系統架構
收發機的目的是接收和發射射頻信號,其應完成的任務主要包括:信號轉換、信號選擇、干擾信號抑制、信號放大、解調和錯誤檢測等。復雜度、造價、功耗以及外部 元件的數量已成為選擇收發機架構的主要標準。本文中主要考慮低功耗的射頻前端系統架構,文獻[6]對外差式接收機、零差式接收機、鏡像抑制接收機、數字中 頻接收機和亞采樣接收機,以及直接變換發送器和兩步發送器的結構及特點進行了詳細的論述。
在WSN應用中,要根據不同的應用場景選擇不同的收發機架構和調制方式。對不同的調制方式,頻譜效率和能量效率之間的權衡已經出現在理論研究和實際應用中。在實際應用中,具有很高頻譜效率的調制方 式如MPAM和MQAM在M較大時,系統實現復雜且功耗較高,這些因素使得一些簡單的調制方式如2FSK,OOK和BPSK,QPSK在以降低能耗為目標應用中,頻譜效率和能量效率有一個較好的權衡。下面介紹四種收發機架構的組成及工作方式。
圖1為MQAM系統的射頻前端收發機結構,接收機采用傳統的超外差低中頻方案,發射機采用直接變換法。發射端主要包括數模轉換器、重建濾波器、上變頻混頻器、功率放大器和射頻濾波器;接收端主要包括射頻 濾波器、下變頻混頻器、基帶放大器、基帶抗混疊濾波器和模數轉換器。調制信號經DAC變換濾波后通過混頻器上變頻至射頻,然后經功率放大,射頻濾波由天線發射出去。接收端信號經天線接收,射頻濾波,低噪聲放大器后經下變頻混頻器下變頻至中頻,然后經基帶放大濾波由ADC變換為數字信號,在數字域進行解調及其它處理。
OOK調制系統相對與那些頻譜效率較高的調制系統來說具有更低的功率消耗,特別適合于高能效短距離無線通信系統中,在這些應用中電路消耗的能量通常高于功率放大 器輸出的能量。圖4為一種OOK收發機結構,發射端采用直接變換方式,晶振產生的載波與數字基帶信號信號進行混頻,上變頻至射頻,經功率放大器由天線發射出去;接收端采用非相干接收解調,省去了混頻器降低了系統總的功耗,由天線接收的信號經SAW濾波器,射頻低噪聲放大器后,由包絡檢波器進行解調,經基帶放大器,模數轉換器恢復出原始信息。
為了減小收發機的總能耗,就需要知道收發機中每個關鍵信號處理模塊的精確的能量模型。對WiFi雙工射頻前端進行了建模,并給出了主要器件的功耗情況。通常除了PA之外的模擬器件的主要功率參數在通信中很難調整,同時盡管數/模轉換器和模/數轉換器是功耗與功率峰均比(Peak-to- Average Ratio, PAR)和調制級數有關的器件,但它們的功耗變化很小,所以我們這里假定它們的功耗為常數,PA的功耗在收發機中占主要部分,我們主要考慮PA的功耗。
目前在收發機中應用的功率放大器主要有兩種:線性的PA和非線性的PA,它們分別用在線性調制系統和非線性調制系統中。一般來 說,在相同數據速率的情況下,線性PA的功率效率比非線性的低,因此消耗的功率要比非線性PA的高;另一方面,線性調制系統的帶寬效率比非線性的要高,數據率也可以很高,并且線性度高的PA可以保證通信質量和抑制頻譜再生。由文獻知PA的功耗不但與效率有關,而且與通信參數有關,比如傳輸的距離、調制級數、數據率、信號峰均比和誤碼率等。
從第三部分可知每比特的能量不僅和放大器的效率有關,還和其它通信參數有關,比如調制方式,調制級數,數據速率,傳輸距離,誤比特率和由成型濾波引起的峰均 比等(MQAM調制的峰均比為由成型濾波和調制級數b引起的峰均比的和)。假定PE為常數,且和射頻前端架構和調制方式有關。我們從文獻和 Freescale,TI的產品中得到射頻前端的各模擬元件常見的功耗作為我們的仿真參數,計算出不同架構和調制方式的PE,具體仿真參數見表1。
圖5 顯示當傳輸距離小于10m時,OOK、QPSK和16QAM調制具有較小的能耗,考慮計算和實現的復雜度,OOK和QPSK調制更適合低功耗WSN系統。 傳輸距離在10m到25m選擇QPSK調制方式,在傳輸距離大于25m時選擇MSK調制方式。對給定的傳輸距離,我們可以選擇合適的架構和調制方式,使 WSN系統射頻前端的能耗最小。
每比特的能耗還與數據的傳輸速率有關,對不同的應用要求不同的傳輸速率。圖6給出了在不同的架構和調制方式 下每比特的能耗與傳輸速率的關系,傳輸距離選擇10m。從圖中可以看出當傳輸速率小于一定速率(200kbps)時,OOK調制方式具有較小的能 耗,BPSK、QPSK和MSK調制方式次之;當傳輸速率大于200kbps時,MSK調制方式具有最小的能耗,OOK, BPSK、QPSK調制方式次之。我們知道對于固定的調制級數,傳碼率Rs與數據速率Rb成正比,Rs等于帶寬B。對高斯白噪聲來說,噪聲功率N與帶寬B 成正比,由公式(10)-(13)知,PA的功耗與噪聲功率N有關。因此當Rb較小時,N較小,PA的功耗相對于架構中其它模塊的功耗PE較小,PE在總 功耗中占主要部分,而OOK,PSK,MSK調制對應架構的PE較小,所以其能耗比QAM調制要小。
結語
本文介紹了四種收發機射頻前端架構,詳細分析了每種架構及對應調制方式的功耗模型,同時考慮了電路消耗的能量和傳輸的能量;通過仿真分析給出了在不同距離和 不同數據傳輸速率的情況下適合WSN系統的低功耗射頻前端架構設計方案。在短距離傳輸時,OOK和QPSK調制方式及其架構符合低功耗設計的考慮;在傳輸 距離較大時,MSK調制方式及及其架構更符合系統低功耗的設計。當傳輸距離為10m時,在數據速率較小的應用場合,OOK、BPSK和QPSK調制方式及 其架構符合低功耗設計的考慮;在設計速率要求較高時,MSK調制方式及及其架構更符合系統低功耗的設計。在其它情況下,要折中考慮功耗和頻譜效率的影響選 擇合適的射頻前端架構及對應的調制方式。相關閱讀:
無線傳感器網絡的特點及應用分析
淺談低功耗無線傳感器網絡電源設計
無線傳感器在醫療中的應用分析