直流穩(wěn)壓電源是任何電子電路試驗中不可缺少的基礎(chǔ)儀器設(shè)備,基本在所有的跟電有關(guān)的實驗室都可以見到。對于一個電子愛好者來說,直流穩(wěn)壓電源也是必不可少的。要得到一個電源,一般有兩種方法:一是購買一臺成品電源,這樣最為省事:二是自己制作一臺電源(因為你是電子愛好者),當然相比于第一種方法會麻煩很多。很顯然這篇文章不是教你如何去選購一臺直流穩(wěn)壓電源……
基本的恒壓恒流電源結(jié)構(gòu)框圖如圖1所示。由電壓基準源、調(diào)整管、誤差放大、電壓取樣以及電流取樣組成。電壓基準源的作用是為誤差放大器提供一個參考電壓,要求電壓準確且長時間穩(wěn)定并且受溫度影響要小。取樣電路、誤差放大和調(diào)整管三者組成了閉環(huán)回路以穩(wěn)定輸出電壓。這樣的結(jié)構(gòu)中電壓基準源是固定的,電壓和電流的取樣電路也是固定的,所以輸出電壓和最高的輸出電流就是固定的。而一般的可變恒壓恒流電源是采用改變?nèi)与娐返姆謮罕壤齺韺崿F(xiàn)輸出電壓以及最高限制電流的調(diào)節(jié)。
圖1 基本恒壓恒流電源框圖
圖2 基本穩(wěn)壓電源簡圖
圖2中所示的是一個基本輸出電壓可變的穩(wěn)壓電源簡圖,可以很明顯地看出這個電路就是一個由運算放大器構(gòu)成的同相放大器,輸出端加上了一個由三極管組成的射極跟隨器以提高輸出能力,因為射極跟隨器的放大倍數(shù)趨近于1,所以計算放大倍數(shù)時不予考慮。 輸入電壓V+通過R1和穩(wěn)壓二極管VD產(chǎn)生基準電壓Vref,然后將Vref放大1+R3/R2倍,即在負載RL上的得到的電壓為Vref(1+R3/R2),因為R3可調(diào)范圍是0~R3max,所以輸出電壓范圍為Vref~Vref(1+R3max/R2)。這不就和我們常用的LM317之類的可調(diào)穩(wěn)壓芯片一樣了,只是像LM317之類的芯片內(nèi)部還集成了過熱保護等功能,功能更加完善,但是也有它的弊端,主要因為它是將電壓基準、調(diào)整管、誤差放大電路都集成在了一個芯片上,因此在負載變化較大時芯片的溫度也會有很大的變化,而影響半導(dǎo)體特性的主要因素之一就是溫度,所以使用這種集成的穩(wěn)壓芯片不太容易得到穩(wěn)定的電壓輸出,這也正是高性能的電壓基準都是采用恒溫措施的原因,比如LM399、LTZ1000等。
[page]
圖3 一只正在FLUKE 8808A 五位半數(shù)字萬用表中“服役”的LM399H
圖3是我從FLUKE 8808A五位半數(shù)字萬用表中拍的恒溫電壓基準LM399H。扯遠了,言歸正傳(欲了解更多關(guān)于電壓基準源的知識,請參看以前《無線電》雜志2008年第7期中張利民老師有關(guān)電壓基準的文章)。這種以改變?nèi)与娮枳柚祦砀淖冚敵鲭妷旱姆€(wěn)壓電源應(yīng)用是比較普遍的,圖4照片中是我們實驗室中大量使用的穩(wěn)壓電源,就是使用調(diào)節(jié)取樣電阻阻值來調(diào)節(jié)輸出電壓的,電壓電流的顯示是使用一片專用的電壓測量芯片ICL7107實現(xiàn)的,這種電源價格低廉易于普及,但也有顯而易見的缺點,因為進行電壓調(diào)節(jié)的可變電阻經(jīng)過長時間使用會出現(xiàn)接觸不良的情況,這導(dǎo)致的后果是相當嚴重的,假設(shè)你正在將電壓從5V慢慢地向6V調(diào)整,因為某個點電位器接觸不良,相當于電位器開路,從圖2可以看出,R3開路的話,輸出電壓就是能輸出的最高電壓,那么你心愛的電路板就可能會回到文明以前了。
圖4 常用的穩(wěn)壓電源
圖5 Agilent E3640A數(shù)控穩(wěn)壓電源
所以更高端的電源如圖5所示的Agilent E3640A采用數(shù)字控制的方法來實現(xiàn)電壓以及電流調(diào)節(jié)的,使用按鍵或旋轉(zhuǎn)編碼器進行設(shè)定,這樣就根除了調(diào)節(jié)環(huán)節(jié)的隱患。
[page]
然而一切事物都不可能完美,因為數(shù)控電源的輸出電壓都是以最小步進電壓值為間隔的離散的電壓點,所以不能像模擬控制的電源那樣輸出連續(xù)的電壓。但這個缺點對我們平時的實驗基本沒有影響,所以這樣的電源在我們看來還是“完美”的。這篇文章要講的就是制作一個這樣“完美”的數(shù)控恒壓恒流電源。圖6就是這臺電源的實物照片。
圖6 本文所講述的數(shù)控穩(wěn)壓電源
圖7 面板特寫
本文所講的數(shù)控恒壓恒流電源特性如下:
1.輸出電壓設(shè)定:0~20V/0.05V步進;
2.電壓輸出誤差:整個輸出范圍內(nèi)實測小于±10mV(FLUKE 8808A五位半數(shù)字萬用表測試);
3.輸出電流設(shè)定:0~3A/0.01A步進;
4.電流顯示誤差:小于±5mA(FLUKE 8808A五位半數(shù)字萬用表測試);
5.輸出紋波峰峰值小于8mV@2A(Agilent 54641D示波器測試);
6.具有關(guān)閉設(shè)定參數(shù)記憶功能;
7.具有輸出使能功能;
8.三個常用電壓值直接設(shè)置(3.3V、5V、12V)(可通過程序修改);
9.使用12864液晶顯示器,實時顯示設(shè)定的電壓值、電流值,當前通過測試得到的電壓值、電流值以及輸出狀態(tài)(圖7所示)。
[page]
先做一下原理簡析,電源部分的原理圖見圖8所示。這是個恒壓恒流電源,所以它的結(jié)構(gòu)和圖1框圖中所示結(jié)構(gòu)的就不會有太大的差異。首先220V的交流市電經(jīng)過變壓器T1變壓后得到交流雙12V輸出,即有中間抽頭的交流24V,VD1~VD4組成了橋式整流電路,這個相信大家不會陌生。在這個橋式整流的上方還多了兩只可控硅VT1、VT2,方向和VD1、VD2相同,這兩個可控硅的作用是進行電壓檔位切換的。當電源的設(shè)定輸出電壓在8V以內(nèi)時,P4端口的第4腳HI/LOW為低電平(該電平由單片機控制提供),IC1、IC2兩只光電耦合器不工作,所以可控硅VT1、VT2斷開,此時的整流橋由VD1、VD2、VD3和VD4組成,這時進入整流橋的是交流12V。當電源的設(shè)定輸出電壓高于8V時,P4端口的第4腳HI/LOW為高電平,這時IC1、IC2兩只光電耦合器上電工作,VT1、VT2工作,交流24V被加到了VT1、VT2上,VD1和VD2此時被反偏而截至,交流12V斷開,所以此時的整流橋由VT1、VT2、VD3和VD4組成,對交流24V進行整流。這樣就實現(xiàn)了電壓檔位的切換,以代替?zhèn)鹘y(tǒng)以繼電器切換的方式,因為沒有機械部件所以壽命更長、可靠性更高。
圖8 原理圖1(電源部分)
與圖1中的結(jié)構(gòu)圖相比這個電源的電壓電流值都是可以調(diào)節(jié)的,所以不是取樣電路可調(diào)就是基準電壓可調(diào)。這里我們使用了調(diào)基準電壓的方法,因為取樣電路的調(diào)整一般是通過改變兩個分壓電阻的阻值來調(diào)整,要數(shù)字控制不容易實現(xiàn),雖然現(xiàn)在有數(shù)控電阻但大多只有8位,精度太低不能滿足要求。在這里調(diào)節(jié)基準電壓是使用了一只12位的雙通道電壓輸出型DA轉(zhuǎn)換器TLV5618(IC5),關(guān)于這個芯片使用可以參考2010年1月份《無線電》雜志中我寫的數(shù)字示波表的文章,其中有詳細的描述這理解不多說了。TLV5618是雙通道12位的DA轉(zhuǎn)換器,A通道用于最高輸出電流的設(shè)定,B通道用于輸出電壓的設(shè)定。使用REF191E(IC6)作為TLV5618的電壓基準,這也就是整個電源的電壓基準,基準電壓為2.048V,因為REF191E的溫度系數(shù)為5ppm,負載調(diào)整率為4ppm,而且輸出電流高達30mA所以完全滿足穩(wěn)壓電源對基準的需求,屬于“高配”。TLV5618使用2.048V的基準,輸出電壓0~4.095V時對應(yīng)的輸入數(shù)據(jù)為0~4095,我們在這里只取其0~4.000V的輸出電壓范圍,步進1mV。對其進行5倍放大就得到了0~20.00V的輸出電壓,步進5mV,而我們的電源所采用的步進是50mV,這樣就有足夠的余量對DA轉(zhuǎn)換器的輸出帶內(nèi)誤差進行修正,但實際使用中不經(jīng)修正也是滿足要求的。
[page]
圖9 原理圖2(控制部分)
誤差放大器使用了高精度雙運算放大器OPA2277P(IC9),因為它有著超低的失調(diào)電壓和超低的溫度漂移系數(shù),以對提高電源的精度和穩(wěn)定度有著至關(guān)重要的作用。TLV5618的B通道輸出電壓用于設(shè)定輸出電壓,該電壓送到IC9A的同相輸入端,反相輸入端輸入通過R8、R9和R10組成的1/5分壓電路分壓后的輸出電壓,兩者進行比較輸出誤差電壓用以控制調(diào)整管進行輸出電壓的調(diào)整,進而實現(xiàn)穩(wěn)壓的目的。對輸出電壓和電流的測量為了能和輸出DA轉(zhuǎn)換器對應(yīng),所以使用了一片12位4通道的AD轉(zhuǎn)換器ADS7841E,一通道用于輸出電壓的測量,二通道用于輸出電流的測量。ADS7841E需要一片4.096V的電壓基準,所以使用REF198E(IC7)為其提供,REF198E和REF191E是同系列芯片,就不多說了。輸出電壓經(jīng)過1/5分壓后一路送入電壓誤差放大器IC9A,而另一路送到了ADS7841E(IC8)的第2腳,即ADS7841E的第一模擬輸入單通道進行AD轉(zhuǎn)換,ADS7841E的輸入范圍是0~4095V,對應(yīng)的輸出數(shù)據(jù)為0~4095,測試轉(zhuǎn)換的電壓分辨率為1mV,但是輸入電壓是經(jīng)過1/5分壓的,所以轉(zhuǎn)換后的數(shù)值再乘以5才能得到輸出電壓值,所以電壓測量的最小分辨率為5mV。
為了提高輸出電流取樣的精度,所以輸出電流取樣使用了一只DALE產(chǎn)的0.04Ω3W 1%精度的低阻值電阻R5,流過1A的電流可以產(chǎn)生40mV的壓降,然后使用儀表放大器AD620(IC10)對R5兩端的壓降進行25倍放大,可以得到1V/1A的電流取樣關(guān)系,0~3A的輸出電流對應(yīng)0~3V的取樣輸出電壓,可以同時滿足DA轉(zhuǎn)換器和AD轉(zhuǎn)換器的要求。電流取樣所得到的電壓一路送到IC9B進行誤差放大,另一路送到AD轉(zhuǎn)換器的第二輸入通道進行AD轉(zhuǎn)換,測量輸出電流。因為ADS7841E的輸入范圍是0~4095V,對應(yīng)的輸出數(shù)據(jù)為0~4095,所以電流測量的最小分辨率為1mA。 AD620的放大倍數(shù)由R6和R7的并聯(lián)值決定,計算公式為Rg=49.4kΩ/(G-1),其中G為放大倍數(shù),帶入G=25可得,Rg=2.058kΩ,因為2.058kΩ不是標準阻值,故而使用多圈電位器調(diào)整得到,為了提高電路的可靠性,所以使用3kΩ的固定電阻和10kΩ的電位器并聯(lián)使用,即使電位器失效,也不致使電路參數(shù)發(fā)生巨大變化而損壞。TLV5618的A通道的輸出電壓送到IC9B的同相輸入端,IC9B的反相輸入端輸入電流取樣的電壓,由IC9B進行誤差放大輸出控制調(diào)整管。因為有VD7和VD8的存在,當輸出電流小于限制電流時IC9B的同相輸入端的電壓高于反相輸入端的電壓,此時IC9B輸出達到飽和,IC9B的輸出電壓高于IC9A的輸出電壓,所以IC9B的輸出電壓被VD8隔離,此時由IC9A控制調(diào)整管,電路工作在分壓狀態(tài)。當輸出電流超過最高輸出電流時IC9B反相輸入端的電壓高于同相輸入端的電壓,此時IC9B的輸出電壓低于IC9A,于是接管調(diào)整管以實現(xiàn)輸出電流的恒流,電路工作在恒流狀態(tài)。因為電源輸出電壓的最小值是0V,所以IC9和IC10必須工作在雙電源下,而IC9和IC10對負電源電流的需求很小(低于10m A),所以使用一片有100mA電流輸出能力的電荷泵芯片MAX660(IC3)將+5V電壓鏡像成-5V為IC9和IC10提供負電壓,L1和C8組成LC濾波器以濾除紋波,使產(chǎn)生-5V電壓更純凈。
更多DIY作品:
發(fā)燒友DIY:30RMB自制便攜式耳機放大器
http://hdh-sz.com/rf-art/80022179
站長必備:能觸摸的的網(wǎng)站訪客計數(shù)器DIY
http://hdh-sz.com/gptech-art/80022156
新年福利,教你DIY一個“溫暖”鼠標“抗寒”
http://hdh-sz.com/cp-art/80022149