中文在线中文资源,色鲁97精品国产亚洲AV高,亚洲欧美日韩在线一区,国产精品福利午夜在线观看

你的位置:首頁 > 電源管理 > 正文

如何利用開關穩壓器為GSPS ADC 供電

發布時間:2016-04-21 責任編輯:wenwei

【導讀】模數轉換器 (ADC) 在任何依賴外部(模擬)世界收集信息進行 (數字)處理的系統中都是不可或缺的組成部分。從通信接收機到數字測試和測量再到軍事和航空航天。此處僅舉數例,這些系統在不同的應用中各有不同。

硅片處理技術的發展(比如65 nm CMOS 和28 nm CMOS)使高速ADC 得以跨越GSPS(每秒千兆) 門檻。對于系統設計人員來說,這意味著能用于數字處理的采樣 帶寬越來越寬。出于環境和成本方面的考慮,系統設計人員不斷 嘗試降低總功耗。一般而言,ADC 制造商建議采用低噪聲LDO (低壓差)穩壓器為GSPS(或RF 采樣)ADC 供電,以便達到最 高性能。然而,這種方式的輸電網絡 (PDN) 效率不高。設計人員 對于使用開關穩壓器直接為GSPS ADC 供電且不會大幅降低 ADC 性能的方法呼聲漸高。
 
解決方案是謹慎地進行PDN 部署和布局布線,確保ADC 性能不受影響。本文討論了線性和開關電源的不同之處,并表明GSPS ADC 與DC-DC 轉換器搭配使用可大幅改善系統能效,且不會影響ADC 性能。本文通過輸電網絡組合探討GSPS ADC 性能,并對成本和性能進行了對比分析。
 
通常建議GSPS ADC 使用的PDN
 
高帶寬、高采樣速率ADC(或GSPS ADC)可以具有多個電源 域(比如AVDD 或DVDD)。隨著尺寸的縮小,不僅電源域的 數量增加,為ADC 供電所需的不同電壓數量也有所增加。例如,AD9250是一款14 位、170 MSPS/250 MSPS、JESD204B 雙通道 模數轉換器,采用180 nm CMOS 工藝制造,具有3 個域:AVDD、 DVDD 和DRVDD。然而,所有3 個域都具有相同的電壓:1.8 V。
 
現在,來看一下AD9680:一款14 位、1.25 GSPS/1 GSPS/820 MSPS/500 MSPS JESD204B 雙通道模數轉換器,采用65 nm CMOS 工藝制造。這款GSPS ADC 具有7 個不同的域(AVDD1、 AVDD1_SR、AVDD2、AVDD3、DVDD、DRVDD 和SPIVDD), 以及3 個不同的電壓:1.25 V、2.5 V 和3.3 V。
 
ADP2384和ADP2164 DC-DC 轉換器用于使電壓下降到可控水 平,以便LDO 能夠在不進入熱關斷的情況下進行穩壓操作。這 些電源域和各種電壓的日益普及是在這些采樣速率下工作所必 需的。它們可以確保各種電路域(比如采樣、時鐘、數字和串行 器)之間具有正確的隔離,同時使性能最優。正是因為這個原因, ADC 制造商才設計了評估板,并推薦詳細的電源設計方案,確保 最大程度降低風險,使性能最大化。例如,圖1 顯示了AD9680 評估板使用的默認 PDN 的功能框圖。根據 Vita57.1 規格,電源輸 入來自 FMC(FPGA 夾層卡)連接器供應的12 V/1 A 和3.3 V/3 A 電源。
 
如何利用開關穩壓器為GSPS ADC 供電
圖1. 用于AD9680 評估板的默認PDN。
 
顯而易見,這是一種昂貴的解決方案,有7 個LDO 穩壓器,每 個域一個。這款PDN 也許是性能最優的,但肯定不是最具性價 比或運行成本效率最高的。系統設計人員認為部署含有多個 ADC 的系統非常有難度。例如,相控陣雷達方案包含成百個 AD9680,全都以同步方式工作。要求系統設計人員為上百個ADC 的每一個電壓域都分配一個LDO 穩壓器是不合理的。
 
用于GSPS ADC 的更簡單的PDN
 
一種更具性價比的PDN 設計方案是將具有同樣電壓值(比如所 有的1.25 V 模擬域)的域組合起來,然后用同一個LDO 來驅 動。這樣可以減少元件數(以及物料清單—BOM—成本),這 可能適合某些設計。其簡化PDN 如圖2 所示;該圖為AD9680 評估板的部署。在該部署中,整個AD9680 都可以使用3.3 V 輸入供電。
 
如何利用開關穩壓器為GSPS ADC 供電
圖2. AD9680評估板的簡化PDN。
 
驅動AD9680 的DC-DC 轉換器
 
通過移除為1.25 V 域供電的單個LDO,還可進一步簡化PDN。 這是最高效、最具性價比的解決方案。這種方案的困難之處在于 確保DC-DC 轉換器的操作穩定性,從而不影響ADC 性能。 ADP2164 驅動AD9680 所有1.25 V 域(AVDD1、AVDD1_SR、 DVDD 和DRVDD)的PDN 如圖3 所示。
 
如何利用開關穩壓器為GSPS ADC 供電
圖3. 使用DC-DC轉換器為AD9680 供電。
 
比較不同的PDN
 
對上文討論的3 個PDN 以及第4 個網絡進行測試;第4 個網絡 采用基準電源為AD9680 評估板供電。表1 列出了AD9680 評估 板上部署的各種輸電網絡。
 
如何利用開關穩壓器為GSPS ADC 供電
表1. 輸電網絡列表
 
由于SPIVDD 可以支持1.8 V 至3.3 V 且被認為屬于非關鍵節點, 因此它采用1.8 V LDO 輸出供電。在一般系統部署中,SPIVDD 可連接2.5 V 或3.3 V 域。也就是說,在那些SPI 總線由很多ADC 與DAC 共享的系統中,仍舊應當監控SPIVDD 連接。如有這種 情況,那么必須非常仔細,確保正常的SPI 操作不會導致SPIVDD 域產生電源瞬變。如果SPIVDD 變得低于閾值電平,那么這些電 源瞬變可能會觸發上電復位 (POR) 的情況。
 
如何利用開關穩壓器為GSPS ADC 供電
表2. SNR 性能對比 (dBFS)
 
如何利用開關穩壓器為GSPS ADC 供電
表3. SFDR 性能對比 (dBFS)
 
表2 和表3 分別顯示了AD9680 使用各種PDN 的SNR 和SFDR 性能。根據AD9680 數據手冊提供各種奈奎斯特區的前端網絡和 寄存器建議設置。
 
僅使用DC-DC 轉換器為AD9680 的1.25 V 域供電的PDN (PDN #3) 在各種輸入頻率下顯示出了良好的性能。這證明了可以組合 域,并在不損失大量ADC 性能的情況下以高效率、高性價比的 方式為它們供電。采用基準源的PDN 具有最佳的噪聲性能,因 為它是噪聲最低的電源。然而,值得注意的是PDN #3 始終比默 認網絡 (PDN #1) 具有更好的SNR 性能。這可能是由于LDO 具 有良好的低頻清除特性,但對于電路中存在高于幾百kHz 的情況 卻無能為力。這可以解釋PDN #3 的0.2 dB 優勢。
 
快速傅立葉變換圖
 
圖4 和圖5 分別顯示了170 MHz 和785 MHz 輸入時的單音FFT。 FFT 未顯示出頻譜性能的下降,因為1.25 V 域由單個DC-DC 轉 換器供電。
 
如何利用開關穩壓器為GSPS ADC 供電
圖4. 170 MHz輸入時的單音FFT,使用PDN #3。
 
如何利用開關穩壓器為GSPS ADC 供電
圖5. 785 MHz輸入時的單音FFT,使用PDN #3。
 
開關雜散
 
除了噪聲性能,由于采用了開關元件和磁性元件,因此還應當檢查DC-DC 轉換器部署的雜散成分。此時,采用謹慎仔細的布局技術以降低接地環路和接地反彈將會是有好處的。有很多資源可以協助測量開關電源噪聲5,6。邊帶雜散出現在開關頻率失調的兩側(本例中為1.2 MHz)。必須說明的是,圖2 或圖3 中的輸出濾波器級是一個兩級濾波器。這個兩級濾波器是降低開關噪聲 (紋波)的主要貢獻因素,有助于改善ADC 噪聲 (SNR) 性能。同 樣的道理,這個兩級濾波器還可協助降低開關雜散,并在輸出 FFT 中體現出來。在圖6 和圖7 中,它們分別表現為170 MHz 和785 MHz。
 
如何利用開關穩壓器為GSPS ADC 供電
圖6. 170 MHz輸入時的1.2 MHz 邊帶開關雜散。雜散水平 = -105 dBFS。
 
如何利用開關穩壓器為GSPS ADC 供電
圖7. 785 MHz輸入時的1.2 MHz 邊帶開關雜散。雜散水平 = -94 dBFS。
 
通過了解PSRR(電源抑制比)或ADC 的電源域,可估算邊帶雜散水平。
 
DC-DC 轉換器開關電路仿真
 
使用諸如ADIsimPE 等工具,可以仿真DC-DC 轉換器輸出端的 兩級濾波器。圖8 顯示了ADIsimPE 原理圖,用來仿真PDN 的 輸出噪聲和穩定性特征。ADIsimPE 是一款使用方便、功能強大 的工具,可幫助系統工程師設計、優化和分析電源網絡。
 
如何利用開關穩壓器為GSPS ADC 供電
圖8. ADP2164 驅動1.25 V 域的ADIsimPE原理圖。
 
圖9 顯示了第一級輸出端的輸出紋波以及電路第二級之后的濾 波輸出,采用ADIsimPE 仿真。此處顯示的紋波約為3 mV p-p。
 
如何利用開關穩壓器為GSPS ADC 供電
圖9. ADIsimPE仿真的一級和二級輸出。
 
物料清單
 
表4 顯示了AD9680 評估板使用的簡化PDN(如圖2 所示)物料 清單。通過使用圖3 中的網絡,系統設計人員可節省高達40%到 45%的BOM成本。BOM成本是在一個使用廣泛的電子元件供應 商網站上通過計算千片訂量價格估算的。
 
如何利用開關穩壓器為GSPS ADC 供電
表4. 圖2 中的PDN 物料清單
 
元件選型和布局
 
采用各種PDN 供電時的ADC 性能不僅取決于精心設計,還取決于元件選型以及它們在PCB 上的布局。在開關電源內產生的大電流跳變通常會導致強磁場,它可以耦合到板上其它電磁元件上,包括匹配網絡中發現的電感以及用于耦合模擬和時鐘信號的 變壓器等。必須采用精心規劃的電路板布局手段來防止這些磁場耦合到關鍵信號上。
 
電感選擇
 
由于組成輸出濾波器級的電感和電容輸電量較大,因此需仔細進行選型。本例中,混合使用了屏蔽和非屏蔽電感。第一個濾波器級使用了一個屏蔽電感。本例中,第二級可以使用非屏蔽電感。 然而,建議兩級均使用屏蔽電感,最大程度降低EMI 輻射。電 感同樣選用具有充足飽和電流 (ISAT) 和直流電阻 (DCR) 裕量的 器件,確保它們不會飽和,或本身產生過多壓降。
 
電容選擇
 
建議使用X5R 或X7R 電容作為輸出濾波器電容。電容還必須具有低ESR(等效串聯電阻)。低ESR 有助于降低輸出端的開關紋波。最大程度降低總ESR 和ESI(等效串聯電感)的另一個訣竅是將電容并聯連接。如圖3 和表4 所示,第一個濾波器級使用 2 個22 μF 電容,而第二個濾波器級使用4 個22 μF 電容。電容 的電壓額定值同樣也是器件選型的重要依據。這是因為陶瓷電容 的電介質隨直流偏置的增加而下降。這意味著額定值為6.3 V 的 22 μF 電容在4 V 直流偏置下最多可能下降50%。本例中,額定值為6.3 V 的電容用于1.25 V 電源。在輸出端加入更多電容確實會略為增加BOM成本和電路板占位面積,但這樣做可以保證 抑制可能會影響ADC 性能的開關噪聲和紋波。
 
鐵氧體磁珠選型
 
如圖3 所示,鐵氧體磁珠用于隔離各種域。鐵氧體磁珠的選擇同 樣非常重要,因為如果鐵氧體磁珠的DCR(直流電阻)高于所 需水平,則會導致域的電壓無法達到最優。這種低電壓會致使 ADC 性能(SNR 和SFDR)達不到最優。對于阻抗特性、最大直流搭載能力以及鐵氧體磁珠的DCR 應高度重視。
 
PCB 布局考慮
 
為了最大程度減少開關穩壓器和ADC 之間的干擾,DC-DC 轉換 器及其開關元件應放置在遠離任何磁性元件對ADC 造成干擾的 地方(比如前段匹配網絡或時鐘網絡)。進行DC-DC 轉換器布 局設計時,兩級濾波器應當盡量靠近DC-DC 轉換器,以便最大 程度降低環路電流。


【推薦閱讀】


機器人小車DIY——開啟機器人世界的第一步
奔馳C級/寶馬3系/奧迪A4L橫測 豪門三分天下
不能說的秘密,拆車坊編輯一輩子都不想買的車
20個汽車發展史上的第一次 你知道幾個?
EMC攻城獅與桃花島主的故事


 
要采購開關么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

  • <center id="09kry"></center>

  • 主站蜘蛛池模板: 天祝| 新和县| 曲水县| 门头沟区| 罗江县| 西乡县| 凌源市| 沅江市| 中卫市| 临泽县| 岱山县| 清水河县| 岳西县| 莫力| 获嘉县| 台湾省| 菏泽市| 延长县| 安吉县| 榆林市| 鸡西市| 永善县| 任丘市| 西和县| 时尚| 沅江市| 同仁县| 边坝县| 苗栗市| 西吉县| 松潘县| 贞丰县| 青州市| 横峰县| 巴林右旗| 南郑县| 讷河市| 天峻县| 台湾省| 长子县| 霍林郭勒市|