-
如何在更寬帶寬應用中使用零漂移放大器
本文簡短介紹了斬波、自穩零和零漂移偽像來源,并概述了放大器設計人員可以用來降低其影響的一些技術。本文還闡釋了如何最大程度地減少精密信號鏈中這些殘余交流偽像的影響,包括匹配輸入源阻抗、濾波和頻率規劃。
2022-11-22
-
有源帶通濾波器的常見類型及應用電路
帶通濾波器與任何其它濾波器一樣,可以圍繞晶體管和運算放大器等有源元件進行設計。帶通濾波器是一種僅允許特定頻帶通過的電路,這個通帶主要在截止頻率之間,它們是fL和fH, 其中fL是較低的截止頻率,fH是較高的截止頻率。
2022-11-22
-
如何使用運算放大器LM741構建一個電壓跟隨器
電壓跟隨器只是一個輸出跟隨輸入的電路,意味著輸出電壓與輸入電壓保持相同。它通常也稱為單位增益運算放大器或運算放大器緩沖器。在這里,我們使用運算放大器LM741構建一個電壓跟隨器,并查看其輸出如何跟隨輸入。我們已經在同相運算放大器教程中討論過它,在這里我們將使用真實硬件構建它并對其進行測試。
2022-11-21
-
手機信號強弱跟什么有關,手機信號放大器真的有用嗎?
現代生活的各個方面都離不開手機,無論是衣食住行,還是社交娛樂,手機都極大的方便了我們的日常生活,而手機信號則會極大的影響我們的使用體驗。不知道大家有沒有這樣的體驗,明明手機信號顯示的滿格,甚至還是5G信號滿格,但就是加載不出頁面,那這到底是怎么一回事呢?EDN小編帶您一起了解。
2022-11-18
-
這個ADC系列可簡化驅動并拓寬ADC驅動器選擇范圍!
自動測試設備、機器自動化、工業和醫療儀器儀表等應用需要精密數據采集系統,以便準確分析并數字化物理或模擬信息。系統設計師為了實現高分辨率精密逐次逼近型(SAR) ADC數據手冊中列示的較高性能,常常不得不使用專用高功率、高速放大器來驅動其精密應用中的傳統型開關電容SAR ADC輸入。
2022-11-04
-
整合ADC的一種簡易測試方法
基于Hein van den Heuvel的電路,構建了一個經典的、三運放、狀態變量振蕩器,并用一小粒小麥燈泡作為振幅穩定電路。對電路中運算放大器的各級負載進行了一天的擺弄,成功地將諧波失真產物降至-95 dBc以下,滿足了當時的需求。
2022-11-01
-
同相運算放大器電壓增益、輸入/輸出阻抗計算方法
運算放大器的放大主要取決于兩個反饋電阻,如 R1 和 R2,它們連接在分壓器配置中。R1 電阻器稱為反饋電阻器 (Rf),提供給運算放大器反相引腳的分壓器輸出等效于 Vin,因為分壓器的 Vin 和結點位于類似的接地節點上。因此,Vout 取決于反饋網絡。
2022-10-28
-
如何利用間接電流模式儀表放大器放大具有大直流偏移的交流信號?
在電磁流量計和生物電測量等應用中,小差分信號與大得多的差分偏移串聯。這些偏移通常會限制電路在前端設計中可以獲得的增益,進而影響整體動態范圍。當使用較低電源電壓時,例如在電池供電的信號鏈中,增益限制更具挑戰性。解決這個大差分偏移問題的一種方案是使用交流耦合測量信號鏈。典型的交流耦合信號鏈包括一個低增益儀表放大器,其后是一個高通濾波器和額外的增益級(請參閱 "放大具有大直流偏移的交流信號以支持低功耗設計")。
2022-10-21
-
如何表征寬帶大功率放大器
用戶對更高數據速率應用的需求正在飛速增長,因此業界需要開發能夠在更高頻率和更高階調制方案下實現大信號帶寬的現代化技術(如高通量衛星和 5G 新空口)。然而,帶寬越大,帶給系統的噪聲就越多;調制方案越高階,則越容易受到噪聲的影響。
2022-10-21
-
運算放大器:模擬電路的“基礎積木”
所謂模擬芯片,是處理外界信號的第一關,所有數據的源頭是模擬信號,模擬芯片是集成的模擬電路,用于處理模擬信號。模擬信號是在時間和幅值上都連續的信號,數字信號則是時間和幅值上都不連續的信號。外界信號經傳感器轉化為電信號后,是模擬信號,在模擬芯片構成的系統里進行進一步的放大、濾波等處理。處理后的模擬信號既可以通過數據轉換器輸出到數字系統進行處理,也可以直接輸出到執行器。
2022-10-18
-
使用功率mos管設計的100W直流伺服放大電路方案
給大家分享的是使用功率 mos 管的 100W 直流伺服放大電路。如果你正好需要直流放大器電路,就可以直接參考了。直流伺服放大器電路使用 MOSFET 2SJ162 + 2SK1058 或 MOSFET 2SK134 + 2SJ49 (To-3)。
2022-10-14
-
高功率GaN RF放大器的熱考慮因素
氮化鎵 (GaN) 是需要高頻率工作(高 Fmax)、高功率密度和高效率的應用的理想選擇。與硅相比,GaN 具有達 3.4 eV 的 3 倍帶隙,達 3.3 MV/cm 的 20 倍臨界電場擊穿,達 2,000 cm2/V·s 的 1.3 倍電子遷移率,這意味著與 RDS(ON) 和擊穿電壓相同的硅基器件相比,GaN RF 高電子遷移率晶體管(HEMT)的尺寸要小得多。因此,GaN RF HEMT 的應用超出了蜂窩基站和國防雷達范疇,在所有 RF 細分市場中獲得應用。
2022-10-13
- 貿澤與Cinch聯手發布全新電子書深入探討惡劣環境中的連接應用
- 自耦變壓器的構造和操作
- 電感器輸出,運算放大器輸入:二階有源濾波器簡介
- ESR 對陶瓷電容器選擇的影響(上)
- 步進電機中的脈寬調制與正弦控制
- 基于射頻無線電力傳輸供電的無電池資產跟蹤模塊的先進監控系統
- ESR 對陶瓷電容器選擇的影響(下)
- 深化綠色承諾,ST與彭水共繪可持續發展新篇章
- 基于SiC的高電壓電池斷開開關的設計注意事項
- 如何更好對微控制器和輸出外設進行電氣隔離?
- 意法半導體公布2024年第四季度及全年財報和電話會議時間安排
- IGBT 模塊在頗具挑戰性的逆變器應用中提供更高能效
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall