-
CareFusion與ADI之間的探討:優化EEG放大器的性能并降低
在過去的20年間,CareFusion Nicolet在EEG診斷系統領域的開發上一直扮演著先驅者的角色。腦電圖(EEG)監測可用于神經系統分析,以進行睡眠研究、腦功能區定位(Brain Mapping)和ICU病患大腦活動的監測等。隨著腦部研究和EEG診斷的持續突破,人們期望EEG監測裝置也能夠在傳統臨床環境以外的新環境中運作,而這些新的環境同時也引發新的設計挑戰,本文將探討其中的一些挑戰。
2020-07-22
-
采用交流耦合儀表放大器實現共模抑制比性能的設計電路應用
現代的電池電壓為3~3.6V,這就要求電路能在低壓下高效工作。本設計提出的一種交流耦合儀表放大器,具有很大的共模抑制比(CMRR)、很寬的直流輸入電壓容限以及一階高通特性。這些特性大多是由高增益 級設計提供的。電路采用普通參數值和普通容限的元件。圖1a示出簡化的放大器電路。該電路的一般原理是電容器C和電阻器R3對輸入信號進行緩沖和交流耦合。
2020-07-22
-
提高差分放大器的共模抑制比,電阻的選擇很關鍵
在各種應用領域,采用模擬技術時都需要使用差分放大器電路,如圖 1 所示。例如測量技術,根據其應用的不同,可能需要極高的測量精度。為了達到這一精度,盡可能減少典型誤差源(例如失調和增益誤差,以及噪聲、容差和漂移)至關重要。為此,需要使用高精度運算放大器。放大器電路的外部元件選擇也同等重要,尤其是電阻,它們應該具有匹配的比值,而不能任意選擇。
2020-07-16
-
用低噪聲儀表放大器設計高性能系統
低噪聲儀表放大器是一種非常靈敏的器件,它能夠在嘈雜的環境中或出現較高不感興趣電壓的條件下對非常微弱的信號進行測量。放大器通過抑制兩個輸入端的共模電壓和放大輸入信號的差值來測量信號。低噪聲儀表放大器寬帶噪聲極低且1/f噪聲轉折頻率低,因此,能滿足大多數精確應用的需要。
2020-07-16
-
詳解一款無需放大器也能實現更高調諧電壓的頻率合成器
鎖相環(PLL)電路是由壓控振蕩器(VCO)和鑒相器組成的反饋系統,振蕩器信號跟蹤施加的頻率或相位調制信號是否具有正確的頻率和相位。需要從固定低頻率信號生成穩定的高輸出頻率時,或者需要頻率快速變化時,都可以使用PLL。
2020-07-13
-
ADALM2000實驗:共發射極放大器
共發射極放大器是三種基本單級放大器拓撲之一。BJT共發射極放大器一般用作反相電壓放大器。晶體管的基極端為輸入,集電極端為輸出,而發射極為輸入和輸出共用(可連接至參考地端或電源軌),所謂“共射”即由此而來。
2020-07-08
-
運算放大器中“軌到軌”的意義
在一些特殊的場合,如穿戴設備,由于采用鋰電池供電,并且需要考慮到尺寸等問題,因此通常其供電電壓并不高。如采用鋰電池3.7V供電,在這種情況下,為了盡可能的使信號的幅度大就需要充分利用系統所提供的電源軌。
2020-07-07
-
禁用引腳還能節省這么多的功耗?我不信
在物聯網時代,電池供電應用日益興盛。本文將說明我們并非一定要在節省功耗和精度之間進行取舍。有些運算放大器有禁用引腳,如果使用得當,可以節省高達 99%的功耗,同時不影響精度。禁用引腳主要用于靜態工作(待機模式)。在這種模式下,所有IC都切換到低功耗狀態,不需要使用器件來處理信號。這使功耗降低了若干個數量級。
2020-07-07
-
如何搭建小型又經濟的輸出級?
信號發生器產生定義的電信號,其特性隨時間推移而變化。如果這些信號表現為簡單的周期波形,如正弦波、方波或三角波,那么這些信號發生器稱為函數發生器。它們通常用于檢查電路或組件的功能。將信號發生器定義的信號施加于被測電路的輸入端,并在輸出端連接至相應的測量設備(例如,示波器)。這樣用戶就可以對電路進行評估。過去,挑戰通常包括如何設計信號發生器的輸出級。本文介紹如何設計通過電壓增益放大器(VGA)和電流反饋放大器(CFA)搭建的小型經濟的輸出級。
2020-07-06
-
5個運算放大器的使用小技巧,學到就是賺到
運算放大器是具有很高放大倍數的電路單元。在實際電路中,通常結合反饋網絡共同組成某種功能模塊。它是一種帶有特殊耦合電路及反饋的放大器。目前,運算放大器被廣泛應用于電子行業中,但是如果在使用運算放大器的過程中不“遵守”一些規則,可能會造成嚴重后果。下面談談我用運算放大器的一點體驗和經驗。
2020-07-06
-
MOS晶體管共源極放大器
共源極放大器是三種基本單級放大器拓撲之一。MOS共源極放大器一般用作反相電壓放大器。晶體管的柵極端為輸入,漏極端為輸出,而源極為輸入和輸出共用(可連接至參考地端或電源軌),所謂共用即由此而來。
2020-06-30
-
推挽放大器交越失真的成因及消除方法
本文的測量與分析,以輸入及輸出均為變壓器耦合的經典電路為原型。至于另一種也被廣泛使用的單端推挽電路,僅僅是輸入信號的激勵方式,以及輸出信號的整合方式不同,下述的基本原理依然適用。
2020-06-29
- 貿澤與Cinch聯手發布全新電子書深入探討惡劣環境中的連接應用
- 自耦變壓器的構造和操作
- 電感器輸出,運算放大器輸入:二階有源濾波器簡介
- ESR 對陶瓷電容器選擇的影響(上)
- 步進電機中的脈寬調制與正弦控制
- 基于射頻無線電力傳輸供電的無電池資產跟蹤模塊的先進監控系統
- ESR 對陶瓷電容器選擇的影響(下)
- 深化綠色承諾,ST與彭水共繪可持續發展新篇章
- 基于SiC的高電壓電池斷開開關的設計注意事項
- 如何更好對微控制器和輸出外設進行電氣隔離?
- 意法半導體公布2024年第四季度及全年財報和電話會議時間安排
- IGBT 模塊在頗具挑戰性的逆變器應用中提供更高能效
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall