專(zhuān)家剖析:射頻系統(tǒng)中MEMS時(shí)鐘振蕩器如何使勁?
發(fā)布時(shí)間:2014-12-10 責(zé)任編輯:sherryyu
【導(dǎo)讀】本文介紹基于MEMS的DCXO和傳統(tǒng)牽引振蕩器在抖動(dòng)清除和通信同步鎖相環(huán)路應(yīng)用中的比較。并以實(shí)例說(shuō)明如何應(yīng)用高性能DCXO和FPGA來(lái)設(shè)計(jì)一個(gè)簡(jiǎn)潔的、全數(shù)字化的抖動(dòng)清除鎖相環(huán)電路。
時(shí)鐘振蕩器和射頻系統(tǒng)
時(shí)鐘振蕩器作為頻率合成鎖相環(huán)的參考信號(hào)源,廣泛應(yīng)用于各種射頻系統(tǒng)的本地振蕩器、時(shí)鐘發(fā)生電路和通信同步電路(見(jiàn)圖1)。
本地振蕩器通過(guò)鎖相環(huán)路倍頻,產(chǎn)生射頻混頻電路所需要的本振驅(qū)動(dòng)信號(hào)。參考時(shí)鐘振蕩器的頻率準(zhǔn)確度和穩(wěn)定度決定了本振信號(hào)和射頻收發(fā)器工作頻率的準(zhǔn)確度和穩(wěn)定度。對(duì)頻率精度要求不高的射頻系統(tǒng)使用射頻芯片內(nèi)置振蕩器電路與外接石英晶體諧振器組成參考時(shí)鐘振蕩器,這可以達(dá)到10-4~10-5的頻率精度。對(duì)頻率誤差和環(huán)境穩(wěn)定性要求更高的射頻通信系統(tǒng)需要獨(dú)立的溫補(bǔ)振蕩器(TCXO)或頻率可以微調(diào)的牽引溫補(bǔ)振蕩器(VC-TCXO)來(lái)達(dá)到10-6~10-7精度等級(jí)。恒溫振蕩器(OCXO)隔離了外部溫度對(duì)振蕩器的影響,使頻率精度達(dá)到了10-8~10-9,能滿足無(wú)線基站和高容量光纖傳輸網(wǎng)絡(luò)節(jié)點(diǎn)的時(shí)間和頻率基準(zhǔn)要求。
圖1:時(shí)鐘振蕩器在射頻系統(tǒng)中的應(yīng)用
射頻系統(tǒng)的時(shí)鐘發(fā)生電路可提供數(shù)模和模數(shù)轉(zhuǎn)換電路的取樣時(shí)鐘、基帶數(shù)字信號(hào)處理器時(shí)鐘、串行數(shù)據(jù)和時(shí)鐘恢復(fù)電路的本地時(shí)鐘。作為時(shí)鐘發(fā)生電路的參考源,時(shí)鐘振蕩器的相位噪聲和抖動(dòng)性能,對(duì)模數(shù)信號(hào)轉(zhuǎn)換的信噪比和數(shù)據(jù)傳輸誤碼率和恢復(fù)時(shí)鐘的抖動(dòng)都有重要影響。
射頻系統(tǒng)的通信同步和抖動(dòng)清除電路也是時(shí)鐘振蕩器的重要應(yīng)用。經(jīng)過(guò)無(wú)線或有線信號(hào)傳輸和時(shí)鐘恢復(fù)過(guò)程,受信道噪聲的影響,系統(tǒng)時(shí)鐘的相位噪聲和抖動(dòng)會(huì)增加。抖動(dòng)清除電路應(yīng)用窄帶鎖相環(huán)路和具有低相位噪聲特性的牽引振蕩器(VCXO)對(duì)系統(tǒng)時(shí)鐘相位噪聲進(jìn)行過(guò)濾,可獲得低抖動(dòng)的時(shí)鐘輸出。
全硅MEMS時(shí)鐘振蕩器的頻率穩(wěn)定性和相位噪聲性能在最近幾年取得了突破性的進(jìn)展。MEMS振蕩器也展現(xiàn)了優(yōu)異的環(huán)境穩(wěn)定性(全溫度、沖擊、振動(dòng)、電磁干擾、電源噪聲)和器件可靠性。 在架構(gòu)上,全硅MEMS時(shí)鐘振蕩器結(jié)合了固定頻率的MEMS諧振器和提供溫度補(bǔ)償和頻率合成功能的、具有高分辨率的、分?jǐn)?shù)N鎖相環(huán)電路。基于這一架構(gòu)已經(jīng)開(kāi)發(fā)出各種不同類(lèi)別的時(shí)鐘振蕩器—從單端和差分信號(hào)輸出的標(biāo)準(zhǔn)振蕩器、TCXO、VC-TCXO、VCXO到數(shù)字控制振蕩器(DCXO)。
本文介紹基于MEMS的DCXO和傳統(tǒng)牽引振蕩器在抖動(dòng)清除和通信同步鎖相環(huán)路應(yīng)用中的比較。并以實(shí)例說(shuō)明如何應(yīng)用高性能DCXO和FPGA來(lái)設(shè)計(jì)一個(gè)簡(jiǎn)潔的、全數(shù)字化的抖動(dòng)清除鎖相環(huán)電路。
[page]
頻率控制方法
振蕩器可通過(guò)直接牽引頻率或使用高分辨率鎖相環(huán)調(diào)整頻率來(lái)實(shí)現(xiàn)頻率控制。直接牽引頻率的VCXO用調(diào)整變?nèi)荻O管電壓來(lái)改變諧振電路電容,而直接牽引頻率的DCXO通過(guò)可編程開(kāi)關(guān)切換不同的諧振電容。使用石英晶體諧振器的VCXO直接牽引頻率調(diào)整可以保持低相位噪聲,但牽引范圍被限制在約±200ppm。當(dāng)系統(tǒng)應(yīng)用需要更寬的頻率牽引范圍和與晶體振蕩器相近的低噪聲特性時(shí),用戶更傾向于選擇基于鎖相環(huán)的MEMS控制振蕩器架構(gòu),因?yàn)樗鼈兛梢蕴峁└哌_(dá)±1600ppm的牽引范圍。
基于鎖相環(huán)的MEMS VCXO內(nèi)部電路包括一個(gè)模數(shù)轉(zhuǎn)換器,將輸入電壓轉(zhuǎn)換成數(shù)字信號(hào),并驅(qū)動(dòng)一個(gè)分?jǐn)?shù)N鎖相環(huán)來(lái)調(diào)節(jié)輸出頻率。該架構(gòu)在牽引范圍和VCO增益(Kv)的線性度都優(yōu)于直接牽引方式。基于變?nèi)荻O管的VCXO的VCO增益線性度僅為10%,而鎖相環(huán)頻率牽引的線性度可以達(dá)到0.1% 至1.0%。良好的線性度使得鎖相環(huán)路設(shè)計(jì)簡(jiǎn)化并在整個(gè)工作范圍內(nèi)更加穩(wěn)定。
然而,增加鎖相環(huán)VCXO牽引范圍通常會(huì)增加振蕩器輸出的相位噪聲,這是設(shè)計(jì)人員不愿意增加牽引范圍的一個(gè)原因。DCXO可以解決這個(gè)問(wèn)題。DCXO可以接收數(shù)字化的頻率牽引信號(hào),并直接驅(qū)動(dòng)DCXO內(nèi)部全數(shù)字化的鎖相環(huán)反饋分頻器及調(diào)制器,不需要經(jīng)過(guò)模數(shù)轉(zhuǎn)換器,從而清除了近載波相位噪聲的一個(gè)來(lái)源。
DCXO可以做到在增加頻率牽引范圍而不增加近載波相位噪聲,并具有優(yōu)于1%非常線性的增益響應(yīng),這可與最好的VCXO相媲美。DCXO提供許多可編程參數(shù),因此,設(shè)計(jì)人員可以有更多Kv、輸出頻率、牽引范圍參數(shù)的選擇。
DCXO參數(shù)的選擇
DCXO在實(shí)際運(yùn)行環(huán)境下可用的絕對(duì)頻率牽引范圍(APR)是由振蕩器電路的牽引范圍,頻率穩(wěn)定性和長(zhǎng)期老化特性所決定的。例如,一個(gè)±150ppm牽引范圍,頻率穩(wěn)定性±10ppm和老化特性 ±5ppm的DCXO將有±135ppm的APR。如果振蕩器的頻率穩(wěn)定性等級(jí)降到±50ppm, 則可用頻率范圍APR也減少到±95ppm。在滿足系統(tǒng)規(guī)格前提下,設(shè)計(jì)人員可能需要考慮在所需振蕩器穩(wěn)定性和器件成本之間的權(quán)衡。
圖2:頻率分辨率量化引起的相位噪聲,DCXO 10 MHz輸出,頻率更新速率每秒25000次
[page]
應(yīng)用DCXO的數(shù)字鎖相環(huán)路設(shè)計(jì)需要選擇合適的頻率分辨率、頻率更新速率和更新延遲,以盡量減少頻率更新引起的量化相位噪聲。通過(guò)提高頻率更新速率和頻率分辨率,量化噪聲可以降至振蕩器本征相位噪聲水平以下。圖2是不同頻率分辨率調(diào)整下的10MHz DCXO相位噪聲, 頻率更新速率每秒25,000次。圖中數(shù)據(jù)顯示,如果DCXO頻率調(diào)整的分辨率高于10ppb,頻率更新引入的量化噪聲可降至低于振蕩器本征相位噪聲的水平,使得頻率調(diào)整不會(huì)影響性能。頻率更新速率也是非常重要的設(shè)計(jì)參數(shù),因?yàn)楦滤俾侍蜁?huì)導(dǎo)致DCXO在相對(duì)長(zhǎng)的時(shí)間累積較大的頻率相位誤差,從而導(dǎo)致較大的頻率調(diào)整數(shù)值和增加量化相位噪聲。但是,對(duì)于一個(gè)能以1ppb分辨率調(diào)整的DCXO,即使是低至每秒2,500次的更新速率,也足以確保量化噪聲不影響振蕩器的性能(見(jiàn)圖3)。
圖3:頻率更新速率對(duì)近載波相位噪聲的影響,DCXO頻率分辨率1 ppb
DCXO抖動(dòng)清除電路實(shí)現(xiàn)
應(yīng)用于抖動(dòng)清除鎖相環(huán)路的DCXO應(yīng)具有足夠高的頻率更新速率,極高的頻率分辨率,低相位噪聲性能和適合系統(tǒng)要求的頻率牽引范圍。圖4是一個(gè)基于DCXO和FPGA的全數(shù)字鎖相環(huán)路125MHz時(shí)鐘的抖動(dòng)清除電路。該設(shè)計(jì)選擇的SiT3907 DCXO可以提供最高每秒25,000次的頻率更新速率,1ppb的高頻率分辨率,小于1 ps RMS(12kHz~20MHz)的積分相位抖動(dòng)特性和最高達(dá)±1600ppm的線性牽引范圍。全數(shù)字鎖相環(huán)電路包括輸入時(shí)鐘分頻器,相位累加器、環(huán)路濾波器,環(huán)路狀態(tài)控制電路,可選的CIC濾波器,以及驅(qū)動(dòng)DCXO芯片的串行通信接口。
圖4:基于DCXO和ADPLL的抖動(dòng)清除電路框圖
相位累加器是一個(gè)啟停計(jì)數(shù)器,由反饋的DCXO時(shí)鐘驅(qū)動(dòng)。計(jì)數(shù)器周期的啟動(dòng)和結(jié)束由輸入時(shí)鐘分頻脈沖觸發(fā)。輸入時(shí)鐘預(yù)分頻值N決定了相位累加器的采樣率。
環(huán)路濾波器需要保持低帶寬,一般不大于相位累加器采樣率的十分之一。環(huán)路狀態(tài)控制電路在檢測(cè)到鎖定狀態(tài)之后可降低環(huán)路增益,進(jìn)一步提高噪聲抑制能力。
圖4的數(shù)字鎖相環(huán)電路還包括兩個(gè)附加功能,可以降低相位噪聲和抖動(dòng)。第一個(gè)功能是環(huán)路狀態(tài)控制電路的更新或復(fù)位信號(hào),可最小化相位誤差的積累。第二個(gè)功能是可選的CIC濾波器,可降低開(kāi)環(huán)增益。沒(méi)有打開(kāi)CIC濾波器的開(kāi)環(huán)增益H(s)為:
其中,N是系統(tǒng)時(shí)鐘與相位比較器采樣頻率之間的比率。當(dāng)環(huán)路濾波器增益在鎖定過(guò)程中的兩個(gè)值之間交替時(shí),CIC濾波器可減輕增益變化對(duì)輸出的影響。另外,調(diào)節(jié)增益Kp和Ki之間的比例可以增加穩(wěn)定性、提高性能。
圖5:比較帶抖動(dòng)的125 MHz系統(tǒng)時(shí)鐘輸入(黃色,頂部)與抖動(dòng)清除后的輸出時(shí)鐘(藍(lán)色,底部)
實(shí)驗(yàn)測(cè)量該設(shè)計(jì)的相位噪聲、相位抖動(dòng)和抖動(dòng)衰減的有效性。測(cè)量數(shù)據(jù)顯示對(duì)正弦信號(hào)調(diào)制抖動(dòng)的衰減可高達(dá)60dB,并導(dǎo)致綜合相位抖動(dòng)顯著降低。圖5顯示抖動(dòng)清除電路對(duì)時(shí)鐘信號(hào)的影響;從一個(gè)能觀察到明顯抖動(dòng)的125MHz系統(tǒng)時(shí)鐘開(kāi)始,將寬帶相位抖動(dòng)從157 ps RMS降至3.5 ps RMS,產(chǎn)生了一個(gè)適合通信和網(wǎng)絡(luò)應(yīng)用的高性能、低抖動(dòng)的輸出時(shí)鐘。
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過(guò)基本描述找到需要的電容?
技術(shù)文章更多>>
- 混合信號(hào)示波器的原理和應(yīng)用
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十)——功率半導(dǎo)體器件的結(jié)構(gòu)函數(shù)
- JFET 共源共柵提高了電流源性能
- 福耀玻璃曹德旺主席蒞臨深圳傲科指導(dǎo)交流并與傲科達(dá)成戰(zhàn)略合作意向
- 京東工業(yè)元器件自營(yíng)服務(wù)商配套能力再升級(jí) 與廣東芯博通達(dá)成合作
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索