中文在线中文资源,色鲁97精品国产亚洲AV高,亚洲欧美日韩在线一区,国产精品福利午夜在线观看

你的位置:首頁 > 傳感技術 > 正文

可穿戴電子設備可監控生命體征、活動水平等

發布時間:2018-02-27 來源:Jan-Hein Broeders 責任編輯:wenwei

【導讀】配備傳感器或者連接到穿戴式傳感器后,這些設備可用來監控日常活動和個人健康狀況。在不斷增強的健康意識推動下,人們開始關注測量生命體征參數——如心率、體溫、血氧飽和度、血壓、活動水平(運動量)和脂肪燃燒量——以及追蹤這些參數的日常變化趨勢。
 
當我還是個小男孩的時候,媽媽總是不停地叮囑我要帶夠零錢,以防在遇到緊急情況時需要打電話。二十年后,移動電話使我們能夠隨時隨地撥打電話。又經過20 年的創新后,語音通話已不再是手機這款智能設備的主要功能,它不僅可以拍攝美麗的照片、播放音頻和視頻流文件,而且還提供各種各樣的服務——現在還逐漸成為我們的私人教練。配備傳感器或者連接到穿戴式傳感器后,這些設備可用來監控日常活動和個人健康狀況。在不斷增強的健康意識推動下,人們開始關注測量生命體征參數——如心率、體溫、血氧飽和度、血壓、活動水平(運動量)和脂肪燃燒量——以及追蹤這些參數的日常變化趨勢。
 
現在,裝有多個傳感器的通用傳感器前端可監控這些參數。最大的挑戰是最大程度地縮小尺寸并延長電池使用壽命。本文討論面向迅猛增長的可穿戴電子產品市場的解決方案。
 
最重要的生命體征信號
 
沒了心跳,我們就會有大麻煩,因此,脈搏或心率至今仍是我們需監控的最重要的參數。除了每分鐘心跳次數以外,我們還想檢查心臟行為與活動量的關系。心律也非常重要,因為快速變化的心率是心臟疾病的征兆。
 
心率和心臟活動監護通常是使用心電圖(ECG)測量生理電信號來實現。連接到身體上的電極可測量心臟組織中心電的信號的活動。專業的診斷系統便是基于此原理,測量時胸部和四肢最多可連接10 個電極。ECG 可提供一次心跳不同分量(P 波、QRS 波和T 波)的相關詳細信息。
 
可穿戴電子設備可監控生命體征、活動水平等
圖1. AD8232 單導聯ECG 前端
 
單導聯ECG 在體育界的應用越來越普遍,其使用雙電極胸帶來測量心臟活動。雖然可檢測到各種ECG 波形,但大多數系統只測量心率。這些胸帶穿戴起來并不舒服,因此,體育和保健行業正在尋找替代方案,例如將電極集成到運動衫上。AD8232 單導聯心率監護儀前端(如圖1 所示)就是專為此類低功耗可穿戴應用而開發的。該器件內置增益為100 V/V 的儀表放大器和一個高通濾波器,能阻止皮膚上電極的半電池電位產生的失調電壓。輸出緩沖器和低通濾波器則可抑制肌肉活動產生的高頻分量(EMG 信號)。此低功耗前端功耗為170 μA,可與16 位片上計量儀ADuCM350配合使用,進行高性能、單導聯ECG 測量。
 
測量心率的新方法
 
心率測量的新趨勢是光電容積圖(PPG),這是一種無需測量生物電 信號就能獲得心臟功能信息的光學技術。PPG 主要用于測量血氧 飽和度(SpO2),但也可不進行生物電信號測量就提供心臟功能信 息。借助PPG 技術,心率監護儀可集成到手表或護腕等可穿戴設 備上。由于生理電勢法的信號電平極其微弱,所以無法做到這 一點。
 
在光學系統中,光從皮膚表面投射出來。再由光電傳感器測量紅細胞吸收的光量。隨著心臟跳動,不斷變化的血容量使接收到的光量分散開來。在手指或耳垂上進行測量時,由于這些部位有相當多的動脈血,使用紅光或紅外光源可獲得最佳精度。不過,手腕表層很少有動脈存在,腕部穿戴式設備必須通過皮膚表層下面的靜脈和毛細血管來檢測脈動分量,因此綠光效果會更好。
 
ADPD142 光學模塊(如圖2 所示)具備完整的光度測量前端,并集成光電傳感器、電流源和LED。該器件專為測量反射光而設計,可用來實現PPG 測量。所有元件都封裝在一個小小的模塊上。
 
可穿戴電子設備可監控生命體征、活動水平等
圖2. ADPD142 光學模塊
 
使用光學VSM 所面臨的挑戰
 
利用腕部穿戴式設備測量PPG 面臨的主要挑戰來自環境光和運動產生的干擾。陽光產生的直流誤差相對而言比較容易消除,但日光燈和節能燈發出的光線都帶有可引起交流誤差的頻率分量。模擬前端使用兩種結構來抑制DC 至100 kHz 的干擾信號。模擬信號經過調理后,14 位逐次逼近型數模轉換器(ADC)將信號數字化,再通過I2C 接口發送到微處理器進行最終后處理。
 
同步發送路徑與光接收器并行集成在一起。其獨立的電流源可驅動兩個單獨的LED,電流電平最多可編程至250 mA。LED 電流是脈沖電流,脈沖長度在微秒級,因此可保持較低的平均功耗,從而最大程度地延長電池使用壽命。
 
LED 驅動電路是動態電路且可即時配置,因此不受各種環境條件影響,例如環境光、穿戴者皮膚和頭發的色澤或傳感器和皮膚之間的汗液,這些都會降低靈敏度。激勵LED 配置非常方便,可用于構建自適應系統。所有時序和同步均由模擬前端處理,因此不會增加系統處理器的任何開銷。
 
ADPD142 提供兩種版本:ADPD142RG 集成紅光LED 和綠光 LED,用于支持光學心率監護;ADPD142RI 集成紅光LED 和紅 外LED,用于進行血氧飽和度(SpO2)測量。)
 
運動的影響
 
運動也會干擾光學系統。當光學心率監護儀用于睡眠研究時,這可能不是問題,但如果在鍛煉期間穿戴,運動腕表和護腕將很難消除運動偽像。光學傳感器(LED 和光電檢測器)和皮膚之間的相對運動會降低光信號的靈敏度。此外,運動的頻率分量也可能會被視為心率測量,因此,必須測量該運動并進行補償。設備與人體相貼越緊密,這種影響就越小,但采用機械方式消除這種影響幾乎是不可能的。
 
我們可使用多種方法來測量運動。其中一種是光學方法,即使用多個LED 波長。共模信號表示運動,而差分信號用來檢測心率。不過,最好是使用真正的運動傳感器。該傳感器不僅可準確測量應用于可穿戴設備的運動,而且還可用于提供其他功能,例如跟蹤活動、計算步數或者在檢測到特定g 值時啟動某個應用。
 
ADXL362 是一款微功耗、3 軸MEMS(微機電系統)加速度計,非常適合在電池供電型可穿戴應用中檢測運動。內置的12 位ADC可將加速度值轉換為數字信號,分辨率為1 mg。功耗隨采樣速率動態變化,當輸出數據速率為100 Hz 時功耗僅為1.8 μA,在400 Hz時為3.0 μA。這些較高的數據速率對于用戶接口來說非常有用,例如單擊/雙擊檢測。
 
對于在檢測到運動時啟動某個應用的情況,則無需進行高速采樣,因此可將數據速率降至6 Hz,此時平均功耗為300 nA。因而,對于低功耗應用和不易更換電池的植入式設備來說,此傳感器非常有吸引力。ADXL362 采用3.0 mm × 3.25 mm 封裝。圖3 顯示了不同電源電壓條件下電源電流與輸出數據速率之間的關系圖。
 
可穿戴電子設備可監控生命體征、活動水平等
圖3. ADXL362 電源電流與輸出數據速率的關系
 
系統中各傳感器的連接
 
系統的核心是混合信號片上計量儀ADuCM350,它與所有這些傳感器相連,并負責運行必要的軟件,以及儲存、顯示或傳送結果。該器件集成高性能模擬前端( AFE)和16 MHz ARM® Cortex®-M3處理器內核,如圖4 所示。AFE 的靈活性和微處理器豐富的功能組合使此芯片成為便攜式應用和可穿戴應用的理想選擇。可配置的AFE 支持幾乎所有傳感器,其可編程波形發生器可使用交流或直流信號為模擬傳感器供電。高性能的接收信號鏈會對傳感器信號進行調理,并使用無丟碼16 位160 kSPS ADC 將這些信號數字化。其中,后者的積分非線性(INL)/差分非線性(DNL)最大值為±1-LSB,。該接收信號鏈支持任何類型的輸入信號,包括電壓、電流、恒電勢、光電流和復阻抗。
 
可穿戴電子設備可監控生命體征、活動水平等
圖4. 集成AFE 的Cortex-M3
 
AFE 可在獨立模式下工作,無需Cortex-M3 處理器干預。可編程時序控制器控制測量引擎,測量結果通過DMA 儲存到存儲器內。開始測量前,可執行校準程序,以校正發送和接收信號鏈中的失調和漂移誤差。對于復阻抗測量,如血糖、體質指數(BMI)或組織鑒別應用,內置DSP 加速器可實現2048 點單頻離散傅里葉變換(DFT),而無需M3 處理器干預。這些高性能AFE 功能使ADuCM350 具有其他集成解決方案無可比擬的獨特優勢。
 
Cortex 處理器支持多種通訊端口,包括I2S、USB、MIPI 和LCD顯示驅動器(靜態)。此外,它還包括閃存、SRAM 和EEPROM,并且支持五種不同的電源模式,可最大程度地延長電池使用壽命。
 
ADuCM350 設計用于超低功耗傳感器,性能限制為低速器件。對于要求更高處理能力的應用,可使用工作頻率高達80 MHz 的M3內核或者Cortex-M4 處理器內核。
 
功耗如何?
 
功耗一直是便攜式設備和可穿戴設備中的一個關鍵因素。本文介紹的設備在設計上要求性能高、尺寸小且功耗低,但在非常小的封裝內集成所有一切器件(包括電池)仍然是一個挑戰。盡管新的電池技術實現了每mm3 更高的容量,但與電子產品相比,電池仍然體積較大。
 
能量采集可減小電池尺寸并延長電池使用壽命。能量收集技術有多種,包括熱電、壓電、電磁和光電等技術。對于可穿戴設備,利用光和熱最為合適。傳感器通常不會產生大量輸出功率,因此每焦耳熱量都應當可以被捕獲和使用。ADP5090 超低功耗升壓調節器(如圖5 所示)橋接收集器和電池。此高效開關模式電源可將輸入電壓從低至100 mV 升高到3 V。冷啟動期間,在電池完全放電的情況下,最小輸入電壓為380 mV,但在正常工作時,如果電池電量沒有完全耗盡或者還有一些電能留在超級電容內,任何低至100 mV 的輸入信號都可轉換為較高的電位并儲存下來,以供稍后使用。
 
該芯片采用微型3 mm × 3 mm 封裝,并可進行編程來支持各種不同的能量收集傳感器。最大靜態電流為250 nA,支持幾乎所有電池技術,從鋰離子電池到薄膜電池以及超級電容均可。集成式保護電路可確保其安全運行。
 
可穿戴電子設備可監控生命體征、活動水平等
圖5. ADP5090 能量采集器
 
結論
 
本文介紹了一些用于可穿戴和個人健康應用的低功耗產品,但這個快速增長的市場正在快速變化。ADI 公司的技術可以將這些頗具挑戰性的難題轉變為完善的產品和完整的解決方案。更多驚喜敬請期待。
 
 
 
 
 
 
 
 
 
推薦閱讀:



解讀“北京8分鐘”黑科技背后的中國智慧
工程師博客丨全能ADC,你應該這樣用(連載 中)
鋁電解電容為什么不能承受反向電壓?
“無開銷”DCR電流檢測“功成身退”
對二極管壓降變化進行補償

 
 
要采購傳感器么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

  • <center id="09kry"></center>

  • 主站蜘蛛池模板: 乌拉特后旗| 浏阳市| 翼城县| 松溪县| 东港市| 洪湖市| 乳源| 栖霞市| 玉山县| 洪江市| 来宾市| 济宁市| 都匀市| 安义县| 长白| 巴南区| 土默特左旗| 临江市| 深圳市| 舟曲县| 铁岭市| 星子县| 凤山县| 宕昌县| 依兰县| 太仓市| 苏州市| 穆棱市| 武强县| 酉阳| 黄平县| 黄冈市| 株洲市| 濮阳市| 阿拉善右旗| 徐汇区| 峨眉山市| 安图县| 敦煌市| 额济纳旗| 莆田市|