新型SiC功率模塊以之Si IGBT,在更小的封裝內(nèi)提供更高的功率密度
發(fā)布時(shí)間:2019-11-08 責(zé)任編輯:wenwei
【導(dǎo)讀】隨著包括發(fā)電、儲(chǔ)能和交通運(yùn)輸在內(nèi)的眾多應(yīng)用轉(zhuǎn)向電力驅(qū)動(dòng),需要構(gòu)建更高性能的電力轉(zhuǎn)換和控制系統(tǒng),推進(jìn)以電力驅(qū)動(dòng)的系統(tǒng)的未來(lái)發(fā)展。為此,對(duì)于更緊湊、更高功率密度和可高溫工作電源模塊的需求變得越來(lái)越大。
直到最近,功率模塊市場(chǎng)仍被硅(Si)絕緣柵雙極型晶體管(IGBT)把持。需求的轉(zhuǎn)移和對(duì)更高性能的關(guān)注,使得這些傳統(tǒng)模塊不太適合大功率應(yīng)用,這就帶來(lái)了 SiC 基功率器件的應(yīng)運(yùn)而生。新型 SiC 基器件比之 Si 基器件,能夠在更小的空間內(nèi)提供更高的電壓和電流性能(功率),從而催生了具有最小寄生效應(yīng)和可高溫工作的高功率密度模塊。
本文旨在對(duì)電源工程師和專業(yè)人員進(jìn)行培訓(xùn),幫助了解在現(xiàn)代電力電子應(yīng)用中,電源模塊采用最新 SiC 器件與采用傳統(tǒng) Si IGBT 的比較優(yōu)勢(shì)。本文概述了這兩種技術(shù)的比較,并演示了三相逆變器參考設(shè)計(jì)應(yīng)用中最新的全 SiC 功率模塊的性能。
圖 1:
電力電子行業(yè)正經(jīng)歷著傳統(tǒng)領(lǐng)域(交通運(yùn)輸和電源)以及新興應(yīng)用(例如電動(dòng)汽車(chē)、可再生能源和數(shù)據(jù)中心)的快速增長(zhǎng)。
功率模塊電子產(chǎn)品的趨勢(shì)
由于功率模塊易于排布并且通常與符合行業(yè)標(biāo)準(zhǔn)的總線連接、控制/傳感互連以及市售的散熱器相兼容,因此在功率電子行業(yè)中,功率模塊正越來(lái)越受歡迎。使用模塊可使電源系統(tǒng)設(shè)計(jì)師專注于將電源系統(tǒng)發(fā)揮最大性能,而不必花費(fèi)寶貴的工程時(shí)間來(lái)開(kāi)發(fā)定制外殼、散熱器、總線互連以及集成/調(diào)整感測(cè)和控制電子。
隨著越來(lái)越多的應(yīng)用以驚人的速度增長(zhǎng),更快速、更高效地開(kāi)發(fā)電力系統(tǒng)的需求,比以往任何時(shí)候都更迫切(參見(jiàn)圖 2)。對(duì)可再生能源系統(tǒng)、電動(dòng)汽車(chē)、火車(chē)/軌道交通、更高效電網(wǎng)系統(tǒng)(包括電能存儲(chǔ))以及使數(shù)據(jù)中心和關(guān)鍵電氣系統(tǒng)保持無(wú)縫運(yùn)行的不間斷電源(UPS)的需求,每年都在以兩位數(shù)增長(zhǎng)。
圖 2:
隨著使用 SiC 材料和功率模塊市場(chǎng)的持續(xù)增長(zhǎng),對(duì) SiC 器件的需求也一直在增加。
新型 SiC 器件如何超越傳統(tǒng) Si IGBT
由于新應(yīng)用對(duì)電源模塊的需求越來(lái)越大,加之對(duì)已有應(yīng)用的升級(jí)改造,所以對(duì)于增強(qiáng)電源模塊的性能和技術(shù)能力存在著創(chuàng)新的機(jī)會(huì)。傳統(tǒng)的電源模塊由 Si IGBT 組成,已經(jīng)存在了數(shù)十年。它們具有特定的封裝形態(tài),且這些 Si IGBT 功率模塊的構(gòu)造特征主導(dǎo)了人們對(duì)功率密度和構(gòu)造限制的普遍預(yù)期。
但是,隨著針對(duì) SiC 進(jìn)行了優(yōu)化的新型電源模塊的出現(xiàn),這些標(biāo)準(zhǔn)和看法需要進(jìn)行調(diào)整。最新的SiC 晶體管是采用 SiC 半導(dǎo)體開(kāi)發(fā)的,其帶隙電壓幾乎是 Si 的 3 倍,臨界場(chǎng)達(dá) 10 倍以上、熱導(dǎo)率超過(guò) 5 倍,且整個(gè)功率器件的品質(zhì)因數(shù)遠(yuǎn)超 Si 的能力(見(jiàn)表 1)。
表 1:Si 和 SiC 半導(dǎo)體特性
與雙極結(jié)型晶體管相比,SiC 的優(yōu)勢(shì)加之與 MOSFET 型晶體管的使用相結(jié)合,使得新型全 SiC 功率器件能夠在比同類(lèi) Si IGBT 尺寸小的器件中,實(shí)現(xiàn)高得多的電壓和電流操作。而且,這些 SiC 器件能夠提供比 Si IGBT 低得多(>5 倍)的開(kāi)關(guān)損耗。因此,SiC 器件的開(kāi)關(guān)速度可以設(shè)置為超出(通常為 10-50 kHz)Si IGBT 極限開(kāi)關(guān)速度的幾倍。與 Si IGBT 相比,SiC 器件的導(dǎo)通損耗更低,在輕負(fù)載下也可以實(shí)現(xiàn)更高效率。
創(chuàng)新將 SiC 功率模塊推向商用市場(chǎng)
對(duì)于電源模塊,電源設(shè)備本身只是故事的一部分。組件和附屬電子電路的設(shè)計(jì)和集成功能也會(huì)極大地影響整個(gè)電源模塊的性能和功能。因此,需要進(jìn)行仔細(xì)的設(shè)計(jì)以優(yōu)化功率器件的性能,包括使環(huán)路電感最小化、優(yōu)化高溫操作并考慮合適應(yīng)用的互連復(fù)雜性。
Wolfspeed 通過(guò)其最新的 XM3 全 SiC 電源模塊實(shí)現(xiàn)了所有這些功能,并集成了諸多特性,包括可減少電源模塊的占位面積、提供更高的功率密度、降低物料成本、并且同時(shí)提高性能等。新型XM3 SiC 模塊技術(shù)的許多特性類(lèi)似于高度復(fù)雜的小批量定制生產(chǎn)系統(tǒng),但 XM3 模塊的設(shè)計(jì)目標(biāo)是以極具競(jìng)爭(zhēng)力的價(jià)格為大批量應(yīng)用提供此類(lèi)性能和特性。
圖 3:
Wolfspeed XM3 SiC 電源模塊緊湊、功率密度高、且極其穩(wěn)固耐用,使其非常適合各種大功率工業(yè)、軌道交通和汽車(chē)應(yīng)用。
全 SiC 功率模塊的巔峰之作
新型 XM3 電源模塊(CAB450M12XM3)采用最新一代 Wolfspeed SiC MOSFET 裸片技術(shù)進(jìn)行開(kāi)發(fā),并且實(shí)現(xiàn)了傳導(dǎo)優(yōu)化。該新一代功率模塊具有高溫工作和低環(huán)路電感特性,其單位面積具有極高的功率密度,超過(guò)了 Si IGBT 和其它 SiC 模塊。這些模塊的阻斷電壓在 450 A 的額定電流下可達(dá)到1200 V 的峰值額定值。
XM3 主要特性:
● 具有高功率密度(32 kW/L)的 100 kW 至 300 kW 峰值功率水平
● 高溫(175°C)工作
● 低電感(6.7 nH)設(shè)計(jì)
● 大于 5 倍的更低開(kāi)關(guān)損耗,從而實(shí)現(xiàn)更高的開(kāi)關(guān)頻率(10-50 kHz 典型值)
● 傳導(dǎo)損耗低,無(wú)固有拐點(diǎn)電壓,可提高輕載效率
● 在低側(cè)開(kāi)關(guān)位置(靠近外部 NTC 引腳位置)集成了溫度傳感器
● 內(nèi)置電壓感測(cè)(De-Sat/去飽和)連接,易于集成驅(qū)動(dòng)器
● 偏置的中間端子布局允許簡(jiǎn)單和低電感的母線互連
● 高可靠性的氮化硅功率基板,增強(qiáng)功率循環(huán)能力,以滿足苛刻的市場(chǎng)需求
盡管 XM3 模塊具有出色的電氣特性,但在設(shè)計(jì)時(shí)也考慮了高密度集成。這些新型 SiC 模塊采用極為緊湊的 80 mm × 53 mm × 19 mm 模塊封裝構(gòu)建,使其工作功率密度大于 30 kW/L,與其它同類(lèi)額定功率模塊相比,其封裝尺寸減小了 60%。這一事實(shí)與優(yōu)化的母線互連策略(可降低系統(tǒng)級(jí)寄生電感)相結(jié)合,可使功率模塊效率超過(guò) 98%。
關(guān)鍵參考設(shè)計(jì) — 300 kW 三相逆變器
XM3 SiC 電源模塊的高功率密度和低環(huán)路電感可使許多應(yīng)用受益。以下是 Wolfspeed 300kW 三相逆變器參考設(shè)計(jì)的描述,該逆變器非常適合電機(jī)和牽引驅(qū)動(dòng)器、并網(wǎng)分布式發(fā)電和高效轉(zhuǎn)換器。
圖 4:
該 300 kW 三相逆變器展示了采用 Wolfspeed 新型 XM3 模塊平臺(tái)獲得的系統(tǒng)級(jí)功率密度和效率。該三相逆變器比之 Si 基設(shè)計(jì),功率密度是其 2 倍以上,效率超過(guò) 98%。
遵循 XM3 電源模塊的設(shè)計(jì)理念,該三相逆變器設(shè)計(jì)經(jīng)過(guò)優(yōu)化,以實(shí)現(xiàn)低電感、高載流量電路,從而降低了整個(gè)系統(tǒng)的成本和復(fù)雜性。此外,重疊的平面母線結(jié)構(gòu)用于最大程度地減少額外電感的導(dǎo)入,并且用于減輕紋波的電容器也是低電感組件。這些因素使寄生電感最小,并允許在更高的效率水平下實(shí)現(xiàn)更快的開(kāi)關(guān)速度。
與其它設(shè)計(jì)特性一道,包括 Wolverine™的微變形液冷卻冷板,最終實(shí)現(xiàn)的逆變器尺寸為 279 mm ×291 mm × 155 mm、功率密度為 32.25 kW/L。該逆變器參考設(shè)計(jì)能提供 1.2 kV 的工作電壓,并達(dá)到250 kW 的功率,而體積比 Wolfspeed 之前逆變器參考設(shè)計(jì)要小許多。此外,在實(shí)際測(cè)試中,盡管在測(cè)試過(guò)程中使用了極小的柵極電阻,采用 XM3 SiC 模塊技術(shù)的三相逆變器設(shè)計(jì)仍表現(xiàn)出極低的開(kāi)關(guān)損耗、極小振鈴(見(jiàn)圖 3 和圖 4)。
圖 5:
關(guān)斷(左)和導(dǎo)通(右)時(shí),下部開(kāi)關(guān)的開(kāi)關(guān)波形。
圖 6:
關(guān)斷(左)和導(dǎo)通(右)時(shí),上部開(kāi)關(guān)的開(kāi)關(guān)波形。
SiC 模塊的使用案例和應(yīng)用
Wolfspeed 新型 XM3 SiC 電源模塊經(jīng)過(guò)設(shè)計(jì)適用于多種應(yīng)用,包括現(xiàn)代電機(jī)和牽引驅(qū)動(dòng)、不間斷電源(UPS)和電動(dòng)汽車(chē)(EV)充電機(jī)系統(tǒng)。此外,XM3 的緊湊型封裝和優(yōu)化的母線設(shè)計(jì)所實(shí)現(xiàn)的致密化,可使任何經(jīng)歷高磁場(chǎng)強(qiáng)度、需要大量輸入和/或輸出濾波器、功率水平介于 100 kW 和300 kW 之間的應(yīng)用受益。
此外,原先使用 Si IGBT 模塊、開(kāi)關(guān)速度被限制在幾千赫茲的系統(tǒng),若借助全 SiC 模塊,則可將開(kāi)關(guān)速度提高幾倍。它們包括:數(shù)據(jù)中心電源、工廠自動(dòng)化系統(tǒng)以及其它具有較高系統(tǒng)級(jí)成本的場(chǎng)景,其中更高的效率和減少的模塊數(shù)量可節(jié)省運(yùn)營(yíng)和系統(tǒng)級(jí)成本。此外,SiC MOSFET 裸片的物理耐用性和工作溫度范圍超過(guò)了 Si IGBT 裸片,且這些新型電源模塊非常適合在極端環(huán)境和逐步電氣化的苛刻應(yīng)用(例如軌道交通、牽引和重型設(shè)備行業(yè))中運(yùn)行。
結(jié)論
伴隨著電力電子行業(yè)的增長(zhǎng)以及新生市場(chǎng)力量的推動(dòng)下,對(duì)性能的要求已超出了 Si 基雙極電源模塊的技術(shù)極限。因此,Wolfspeed 已將其在 SiC 技術(shù)方面的卓越成就應(yīng)用在其最新且功率密度最高的大批量和市售功率模塊 — XM3 53 mm 全 SiC 功率模塊。這些新型 XM3 模塊具有尺寸緊湊、高溫運(yùn)行、快速開(kāi)關(guān)速度和低電感設(shè)計(jì)等優(yōu)勢(shì),正逢其時(shí)地為新興的電機(jī)、轉(zhuǎn)換器、逆變器和電源應(yīng)用貢獻(xiàn)了體積小得多、效率更高的電源系統(tǒng)。
參考文獻(xiàn)
1. http://www.yole.fr/PowerElectrronics_IndustryOverview.aspx
2. High-Performance 300 kW 3-Phase SiC Inverter Based on Next Generation Modular SiC Power
Modules (IEEE)
3. Wolfspeed CAB450M12XM3 1200V/450A Silicon Carbide XM3 Half-Bridge Module
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車(chē)行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來(lái)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來(lái)
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 探索工業(yè)應(yīng)用中邊緣連接的未來(lái)
- 解構(gòu)數(shù)字化轉(zhuǎn)型:從策略到執(zhí)行的全面思考
- 意法半導(dǎo)體基金會(huì):通過(guò)數(shù)字統(tǒng)一計(jì)劃彌合數(shù)字鴻溝
- 使用手持頻譜儀搭配高級(jí)軟件:精準(zhǔn)捕獲隱匿射頻信號(hào)
- 為什么超大規(guī)模數(shù)據(jù)中心要選用SiC MOSFET?
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
分頻器
風(fēng)力渦輪機(jī)
風(fēng)能
風(fēng)扇
風(fēng)速風(fēng)向儀
風(fēng)揚(yáng)高科
輔助駕駛系統(tǒng)
輔助設(shè)備
負(fù)荷開(kāi)關(guān)
復(fù)用器
伽利略定位
干電池
干簧繼電器
感應(yīng)開(kāi)關(guān)
高頻電感
高通
高通濾波器
隔離變壓器
隔離開(kāi)關(guān)
個(gè)人保健
工業(yè)電子
工業(yè)控制
工業(yè)連接器
工字型電感
功率表
功率電感
功率電阻
功率放大器
功率管
功率繼電器