【導讀】LM5017系列產品等降壓轉換器或穩(wěn)壓器集成電路(IC)可以從正VIN產生負VOUT在DC/DC轉換器領域是常識。乍一看,使用降壓穩(wěn)壓器IC的反向降壓-升壓轉換器的電路圖與降壓轉換器十分相似(圖1a和1c)。但是兩個電路也存在重大差異,無論是在電壓和電流高低,切換電流流動還是在布局上。
在此前的博文中,我討論了VIN范圍、VOUT范圍和可用輸出電流IOUT最大值的區(qū)別。布局的差異源自反向降壓-升壓轉換器和降壓變換器的切換電流流動路徑的差異——雖然至關重要——不容易理解。
圖1顯示了降壓轉換器和反向降壓-升壓轉換器開關并流的差異。在降壓轉換器(圖1a和1b)中,輸入回路——包括輸入電容CIN、高側開關QH和同步整流器QL,傳導高di / dt的切換電流。輸出回路,包括同步整流器QL、電感器L1和輸出電容Cout,具有相對連續(xù)的電流。因此,雖然優(yōu)化輸入電流回路區(qū)域至關重要,但是不如優(yōu)化輸出電流回路區(qū)域重要。
圖1:降壓轉換器(a和b)與反向降壓-升壓轉換器(c和d)中的切換電流
反向降壓-升壓轉換器中的輸入和輸出電流回路與降壓轉換器(圖1c和1d)的構成元素相同。輸入回路中元件包括輸入電容CIN、控制FET QH和同步整流器QL。輸出電流回路中元件包括同步整流器QL、濾波電感器L1及輸出電容COUT。然而,在反向降壓-升壓轉換器中,輸入和輸出電流回路都有高di/dt切換電流,因為在切換子間隔之間,濾波電感器從CIN切換至COUT。
因為降壓和反向原理圖的相似性,切換電流路徑的差異經常被忽視,并且許多反向降壓-升壓設計和布局與降壓轉換器相同,僅優(yōu)化輸入電流回路中的小部分回路區(qū)域。降壓到反向降壓-升壓的轉換常常被當作重新連接VOUT和接地引腳。但是,這種方法沒有考慮到簡單的降壓和反向降壓-升壓轉換器不同的電流(使用相同的穩(wěn)壓器IC),會導致這些問題:
● 圖1c和1d所示的切換電流路徑會產生較大的寄生電感,在切換節(jié)點上引起更高的尖峰,產生以下負面影響:
● 開關電流流過非優(yōu)化電流回路產生更高的電磁干擾(EMI)和噪聲。
● 在反向降壓-升壓配置中,MOSFET的尖峰電壓在|VIN + VOUT|電壓以上。
● 通過輸出電容的切換電流比降壓轉換器中相同的電感器電流具有更高的均方根(RMS)(熱量)值。輸出電容的斷續(xù)電流還會產生更高的輸出紋波。因此,在選擇電容的過程中,設計人員必須考慮到這些高紋波電流,以滿足VOUT紋波和IRMS額定電流的要求。圖2比較了降壓和反向降壓-升壓轉換器輸出電容的紋波電流。
圖2:降壓轉換器(a和b)輸出濾波電容器的紋波電流很小,因為電感器總是與輸出節(jié)點連接。
由于流過輸出電容電流的不連續(xù)性,反向降壓-升壓轉換器(c和d)輸出濾波電容器的紋波電流要高得多。
圖3顯示如何優(yōu)化反向降壓-升壓功率級,以實現更低的di/dt輸入和輸出回路。圖4給出了使用100V同步降壓穩(wěn)壓器LM5017的反向降壓-升壓功率級布局示例。
圖 3:優(yōu)化功率級元件,減小切換電流回路區(qū)域(a),確認電流回路(b)減小電流回路
圖4:采用LM5017同步降壓穩(wěn)壓器的反向降壓-升壓轉換器布局示例
結論
設計者經常使用降壓穩(wěn)壓器來創(chuàng)建反向降壓-升壓穩(wěn)壓器。但是,降壓和反向降壓-升壓電路之間的切換電流存在重要的差異。特別是,設計者應注意輸出濾波電容的選擇和切換電流回路的布局,以獲得最佳的可靠性和噪聲性能。
推薦閱讀: