中文在线中文资源,色鲁97精品国产亚洲AV高,亚洲欧美日韩在线一区,国产精品福利午夜在线观看

你的位置:首頁 > 電源管理 > 正文

通過SiC技術電機逆變器實現電動汽車行駛里程拓展的承諾

發布時間:2021-12-29 來源:ADI,Timothe Rossignol 責任編輯:wenwei

【導讀】目前有兩大因素影響著車輛運輸和半導體技術的未來。行業正在擁抱令人振奮的新方法,即以清潔的電力驅動我們的汽車,同時重新設計支撐電動汽車(EV)子系統的半導體材料,以最大程度地提高功效比,進而增加電動汽車的行駛里程。


政府監管機構繼續要求汽車OEM減少其車系的整體二氧化碳排放量,對違規行為給予嚴厲處罰,同時開始沿著道路和停車區域增設電動汽車充電基礎設施。但是,盡管取得了這些進展,主流消費者仍然對電動汽車的行駛里程存有疑慮,使電動汽車的推廣受到阻力。


更復雜的是,大尺寸的電動汽車電池雖然可以增加其行駛里程,緩解消費者關于行駛里程的焦慮,但它會令電動汽車的價格上漲——電池成本在整車成本中的占比超過25%。


幸運的是,同時期的半導體技術革命催生了新的寬帶隙器件,例如碳化硅(SiC) MOSFET功率開關,使得消費者對電動汽車行駛里程的期望與OEM在成本架構下實際可實現里程之間的差距得以縮小。


Wolfspeed SiC功率器件領導者之一,功率平臺經理Anuj Narain表示,"與現有的硅基技術相比,SiC MOSFET憑借其自身的優勢,被廣泛認為可以為標準電動汽車的駕駛周期增加5%至10%的續航里程。"基于此,它們是電動汽車傳動系統中新一代牽引逆變器的重要組成部分。如果與配套器件一起進行適當開發,其能效提升將代表著消費者對電動汽車領域信心的大幅增加,并有助于加快電動汽車的普及。


1636631747796417.jpg

圖1. 電動汽車中的功率轉換部件。電機逆變器將高壓電池的直流電壓轉換成交流波形來驅動電機,驅動汽車前進。


充分利用SiC技術


眾所周知,基于SiC的功率開關本身在功率密度和效率方面具有優勢,這對于系統散熱和減小器件尺寸都有重要意義。采用SiC有望使逆變器尺寸在800 V/250 kW時縮小3倍,如果配合使用直流環節薄膜電容,則能進一步減小尺寸和節省成本。與傳統的硅功率開關相比,SiC功率開關可以幫助實現更出色的行駛里程和/或更小的電池尺寸,使得開關成本在器件級別和系統級別都更具優勢。


1636631728348969.jpg

圖2. 電池至電機信號鏈。為了增加行駛里程,每個模塊都應設計為可提供最高能效。


在同時考慮行駛里程和成本因素時,仍然需要以電機逆變器為焦點不斷創新,旨在進一步提高電動汽車的效率和行駛里程。作為電機逆變器中價格最昂貴、功能最重要的元件,SiC功率開關需要接受精準控制,以充分發揮額外的開關成本的價值。


1636631712158467.jpg

圖3. 開啟(左)和關閉(右)時的電壓和電流波形。在SiC環境中,dv/dt將超過10 V/ns,這意味著開關800 V直流電壓的時間不會超過80 ns。同樣,di/dt為10 A/ns時,意味著在80 ns內電流為800 A,從中可以觀察到di/dt的變化。


事實上,SiC開關的所有固有優勢都會被共模噪聲干擾,以及被管理不善的功率開關環境中的超快電壓和電流瞬變(dv/dt和di/dt)導致的極高和破壞性的電壓過沖影響。一般來說,拋開底層技術不談,SiC開關的功能相對簡單,它只是一個3端器件,但必須小心連接至系統。


關于柵極驅動器


隔離式柵極驅動器的作用關系到功率開關的最佳開關點,確保通過隔離柵實現短而準確的傳播延遲,同時提供系統和安全隔離,避免功率開關過熱,檢測和防止短路,并促使在ASIL D系統中插入子模塊驅動/開關功能。


1636631694902370.jpg

圖4. 隔離式柵極驅動器橋接了信號世界(控制單元)和功率世界(SiC開關)。除了隔離和信號驅動,該驅動器還執行遙測、保護和診斷功能,使其成為信號鏈的關鍵元件。


但是,SiC開關導致的高擺率瞬態會破壞跨越隔離柵的數據傳輸,所以測量和了解對這些瞬變的敏感性至關重要。ADI專有的 iCoupler?技術具有出色的共模瞬變抗擾度(CMTI),測量性能高達200 V/ns及以上。在安全操作環境中,這可以充分釋放SiC開關時間的潛力。


1636631678699160.jpg

圖5. 20多年來,ADI一直走在數字隔離技術發展的前沿,推出了iCoupler?數字隔離IC。該技術采用帶有厚聚酰亞胺絕緣層的變壓器。數字隔離器采用晶圓CMOS工藝。變壓器采用差分架構,具有出色的共模瞬變抗擾度。


考慮到較小的裸片尺寸和嚴格的熱封裝,短路是基于SiC的電源開關的另一個主要挑戰。柵極驅動器為電動汽車傳動系統的可靠性、安全性和生命周期優化提供了必要的短路保護。


在Wolfspeed等領先的SiC MOSFET功率開關提供商的實際測試中,高性能柵極驅動器已證實了自身的價值。對于關鍵參數性能,例如短路檢測時間和總故障清除時間,可分別低至300 ns和800 ns。為了提高安全性和保護等級,測試結果表明,可調的軟關斷能力對系統能否平穩運行至關重要。


同樣,可以最大程度提高開關能量和電磁兼容性(EMC),以最大限度提高功率性能和電動汽車的行駛里程。驅動能力更高時,用戶可以獲得更快的邊緣速率,從而降低開關損耗。這不僅有助于提高效率,而且無需為每個柵極驅動器分配外部緩沖器,從而節省了電路板空間和成本。相反,在某些條件下,系統可能需要降低開關速度來實現出色的效率,甚至需要分級開關,研究表明以上可以進一步提高效率。ADI提供可調壓擺率,允許用戶進行此操作,去除外部緩沖器則進一步減少了阻礙。


系統要素


需要注意的是,柵極驅動器和SiC開關解決方案的綜合價值和性能可能完全被周圍組件的妥協和/或低效抵消。ADI在功率控制和傳感方面的經驗和我們系統級的性能優化方法相結合,可以涵蓋多種設計考量。


從整體角度來看,電動汽車顯露了優化傳動系統功率效率的額外機會,這對于在確保安全可靠運行的同時最大限度利用電池可用容量來說至關重要。電池管理系統的品質直接影響電動汽車每次充電所能行駛的里程數。優質的電池管理系統能夠最大限度地延長電池的整體使用壽命,從而降低總擁有成本(TCO)。


就功率管理而言,能夠在不降低BOM成本或減小PCB尺寸的情況下克服復雜的電磁干擾問題(EMI)將變得至關重要。無論是隔離式柵極驅動器的供電電路,還是高壓至低壓DC-DC電路,高功效比、熱性能和封裝仍然是功率域的關鍵考慮因素。在所有情況下,能否消除電磁干擾對電動汽車設計人員而言極為重要。涉及到開關多個電源時,電磁干擾是一個非常關鍵的痛點,如果EMC性能出色,則非常有助于減少測試周期和降低設計復雜性,從而加快上市速度。


如果深入研究支持部件的生態系統,會發現電磁傳感技術的進步推動產生了新一代無接觸電流傳感器,該傳感器能夠提供高帶寬、高精度,而且無功率損耗,此外,還推動產生了精密且可靠的位置傳感器,適用于軸端和軸外布置。典型的插電式混合動力電動汽車中部署15到30個電流傳感器,并采用旋轉和位置傳感器來監測牽引電機。在干擾電磁場下的精度和可靠性是跨電動汽車功率系統測量和保持性能的重要屬性。


端到端效率


從電池到電機逆變器,再到支持組件等,從整體來看電動汽車傳動系統的所有元件,ADI發現了無數改進電動汽車的機會,可以提升其整體能效,還能增加電動汽車行駛里程。隨著SiC功率開關技術滲透到電動汽車電機逆變器中,數字隔離已成為其中一個重要的組成部分。


同樣,汽車OEM可以利用多學科方法來優化電動汽車,以確保所有可用的功率檢測和控制器件密切配合,以最大限度提升性能和效率。同時,它們可以幫助消除主流消費者購買電動汽車的最后一個障礙,即行駛里程和成本,同時幫助打造更環保的未來。


參考電路 


1 Richard Dixon。“未來汽車使用的MEMS傳感器。”第4屆年度汽車傳感器和電子峰會,2019年2月。



免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


推薦閱讀:


想要輕松改造智能開關,如何選擇單火線電源很關鍵!

用于實現O-RAN無線解決方案的5G技術設備

SiC-SBD和Si-FRED: 誰能突破功率半導體器件性能天花板?

功率半導體冷知識:IGBT短路結溫和次數

MagAlpha數字濾波器MA732和MA330的優勢

特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

  • <center id="09kry"></center>

  • 主站蜘蛛池模板: 民乐县| 大港区| 嘉荫县| 思南县| 肇源县| 泰州市| 满洲里市| 大港区| 德令哈市| 肇源县| 延边| 那曲县| 元朗区| 宁强县| 腾冲县| 宣恩县| 五台县| 镇平县| 临颍县| 杨浦区| 囊谦县| 辛集市| 鸡东县| 永新县| 徐闻县| 萨迦县| 马公市| 临夏市| 历史| 澳门| 开阳县| 迭部县| 平乐县| 曲松县| 增城市| 石台县| 南乐县| 哈巴河县| 合川市| 丰台区| 瑞昌市|