模擬電壓比較器的基本要點(diǎn)及使用方法:從電平檢測(cè)到振蕩器
發(fā)布時(shí)間:2021-01-22 責(zé)任編輯:lina
【導(dǎo)讀】電壓比較器是一種用于電壓比較的電子器件,能夠比較輸入電壓與已知參考電壓并根據(jù)輸入是高于還是低于參考值來(lái)更改其輸出狀態(tài)。該功能滿足了檢測(cè)閾值交叉、零位和信號(hào)幅值是否在幅值范圍之內(nèi)或之外的要求。
當(dāng)設(shè)計(jì)師希望在物聯(lián)網(wǎng) (IoT)、工業(yè)物聯(lián)網(wǎng) (IIoT)、人工智能 (AI) 和機(jī)器學(xué)習(xí) (ML) 應(yīng)用的邊緣收集更多數(shù)據(jù)時(shí),就需要采用一種簡(jiǎn)單的方法來(lái)檢測(cè)電壓、電流、溫度或壓力等測(cè)量值,以確定其是否高于或低于閾值。類似地,也通常需要知道所測(cè)的量在數(shù)值范圍之內(nèi)或之外。存在噪聲和干擾信號(hào)時(shí)很難在邊緣進(jìn)行這種判定,但是,如果能夠正確選擇并使用電壓比較器會(huì)有助于改善這種局面。
電壓比較器是一種用于電壓比較的電子器件,能夠比較輸入電壓與已知參考電壓并根據(jù)輸入是高于還是低于參考值來(lái)更改其輸出狀態(tài)。該功能滿足了檢測(cè)閾值交叉、零位和信號(hào)幅值是否在幅值范圍之內(nèi)或之外的要求。
本文將介紹電壓比較器的使用、特性及其關(guān)鍵的選型標(biāo)準(zhǔn)。本文以 Texas Instruments 的器件為例,討論如何使用電壓比較器檢測(cè)閾值和過(guò)零,以及時(shí)鐘恢復(fù)和張弛振蕩器應(yīng)用。
什么是電壓比較器?
電壓比較器是一種輸出邏輯狀態(tài)的電子器件,用于指示兩個(gè)輸入中電壓高的那個(gè)輸入(圖 1)。
所用比較器采用 Texas Instruments 的 TLV3201AQDCKRQ1 單比較器,該器件具有推挽輸出。像所有比較器一樣,該器件有兩個(gè)輸入。帶負(fù)號(hào) (-) 的反相輸入和帶正號(hào) (+) 的同相輸入。比較器輸入非常類似于運(yùn)算放大器輸入。主要區(qū)別在于比較器輸出是數(shù)字邏輯狀態(tài)而非模擬電壓。在圖 1 中,輸入是幅值為 200 毫伏 (mV) 的 1 兆赫茲 (MHz) 正弦波。當(dāng)同相輸入端的電壓大于反相輸入端的電壓時(shí),輸出將處于高電平狀態(tài),此時(shí)為 2.5 伏。當(dāng)同相輸入端的電壓低于反相輸入端的電壓時(shí),輸出將變?yōu)榈碗娖綘顟B(tài),此時(shí)為 -2.5 伏。該比較器具有軌至軌輸出,因此輸出邏輯狀態(tài)可擴(kuò)展到電源電平。本例中,使用對(duì)稱的 2.5 伏正負(fù)電源并且反映在輸出電壓擺幅中。
一種考慮比較器的方法是,將其看作單位模數(shù)轉(zhuǎn)換器 (ADC) 。如果配置為在過(guò)零時(shí)改變狀態(tài),則其輸出本質(zhì)上是符號(hào)位。
該比較器的響應(yīng)時(shí)間為 40 納秒 (ns),規(guī)定為傳播速度或延遲。這是從輸入端發(fā)生閾值交叉直到輸出端改變狀態(tài)為止的時(shí)間。傳播速度會(huì)影響比較器的狀態(tài)轉(zhuǎn)換速度,而且實(shí)際中是帶寬相關(guān)的規(guī)范。TLV3201 還具有 1.2 mV 內(nèi)置電壓遲滯,可用于抵消信號(hào)輸入端的噪聲。
遲滯和噪聲
如果比較器輸入端存在噪聲或雜散信號(hào),則可能會(huì)發(fā)生多次閾值交叉且輸出可能會(huì)隨著閾值交叉進(jìn)行多次轉(zhuǎn)換(圖 2)。
解決這種有害的輸出轉(zhuǎn)換的方法是在比較器電路中增加幅值遲滯。遲滯會(huì)使比較器在其輸出超過(guò)閾值后保持其狀態(tài),直到輸入幅值的變化量固定為止。這是通過(guò)將正反饋從比較器的輸出施加到比較器的輸入端來(lái)實(shí)現(xiàn)的,該反饋可以小增量的形式實(shí)現(xiàn)閾值偏移(圖 3)。
電阻 R3 將輸出反饋到參考輸入端,使得參考電平偏移由電阻器 R1、R2 和 R3 的阻值確定的一個(gè)較小的值。給定電阻值時(shí),這將導(dǎo)致 400 mV 的遲滯,從而改變閾值,以使輸出狀態(tài)直到輸入超過(guò)遲滯幅值才改變。這樣的結(jié)果就是輸出在閾值交叉處進(jìn)行單轉(zhuǎn)換。
關(guān)于用來(lái)與圖 1 所示電路進(jìn)行比較的電路的一些注意事項(xiàng)。首先,反相和同相輸入已互換,導(dǎo)致輸出邏輯反相。當(dāng)信號(hào)低于閾值時(shí),輸出為邏輯高電平。該電路特征用在檢測(cè)某個(gè)數(shù)值何時(shí)在數(shù)值范圍內(nèi)或范圍外的電路中。TLV3201 采用 5 伏單電源供電,而不是圖 1 所示的雙 2.5 伏供電。因此,參考電壓通過(guò)分壓電阻 R1 和 R2 獲得,具體為輸入端的 2.5 伏共模電壓。輸入信號(hào)也被偏置到該共模電壓。三角波的峰值電壓為 2 伏,偏置電壓為 2.5 伏。這種電路配置是一種常見的選擇。
檢測(cè)位于窗口內(nèi)或窗口外的值
單電壓比較器可以檢測(cè)輸入電壓是高于還是低于參考閾值。確定輸入電壓是否在兩個(gè)極限之間時(shí)(稱為開窗),需要使用兩個(gè)比較器,每個(gè)極限值使用一個(gè)比較器(圖 4)。
所示窗口電路采用了 Texas Instruments 的 TLV6710DDCR 雙電壓比較器。TLV6710 包含兩個(gè)用于高電壓應(yīng)用的高精度比較器。供電電壓可以在 1.8 至 36 伏之間。該器件包含一個(gè) 400 mV 內(nèi)部 DC 參考源。如圖所示,比較器輸出采用開漏連接,可以通過(guò)一個(gè)公共上拉電阻將其輸出連接在一起,進(jìn)行邏輯“或”運(yùn)算。比較器已接線,以便將參考電壓施加到其中一個(gè)比較器(比較器 A)的反相輸入端,非反向輸入施加到另一個(gè)比較器(比較器 B)。通過(guò)由電阻 R1、R2 和 R3 組成的分壓器施加輸入電壓,分壓器將下限閾值電壓設(shè)置為 3.3 伏,上限閾值電壓設(shè)置為 4.1 伏。當(dāng)輸入 VMON 在窗口內(nèi)時(shí),比較器輸出為高電平(3.3 伏)。比較器 A 指示輸入電壓低于 4.1 伏,比較器 B 指示輸入電壓超過(guò) 3.3 伏。TLV6710 的內(nèi)部額定電壓遲滯為 5.5 mV,有助于抑制噪聲和小毛刺。
對(duì)于從高向低轉(zhuǎn)換,該比較器的傳播延遲通常為 9.9 微秒 (µs),從低到高轉(zhuǎn)換時(shí)為 28.1 µs。這種差異是由于漏極開路輸出的配置引起的。從高到低轉(zhuǎn)換是通過(guò)輸出 FET 實(shí)現(xiàn)的有源下拉,而從低到高轉(zhuǎn)換則是通過(guò)電阻進(jìn)行的無(wú)源上拉,這就需要更多時(shí)間。該比較器用于電壓監(jiān)測(cè)應(yīng)用,無(wú)需極低的傳播延遲。
窗口應(yīng)用
窗口可用于機(jī)器人技術(shù),通過(guò)光線和兩個(gè) CDS 光電管來(lái)控制機(jī)器人的移動(dòng)方向。例如,硫化鎘 (CDS) 光電池在燈光下會(huì)改變電阻,黑暗環(huán)境下電阻較高而燈光下則電阻較小。TINA-TI 仿真使用 Texas Instruments LM393BIPWR 雙比較器說(shuō)明了這一原理(圖 5)。
LM393B 比較器是一款雙比較器,具有集電極開路輸出,可以在 3 - 36 伏的電源電壓下運(yùn)行。在該電路中,每個(gè)部分都向兩臺(tái)電機(jī)中規(guī)定為左或右驅(qū)動(dòng)器的電機(jī)提供控制信號(hào)。
電位計(jì)用于模擬兩個(gè) CDS 光電池。電位計(jì)設(shè)置為 0% 到 40% 表示右側(cè)光電池受到光照,而左側(cè)光電池則處于黑暗中。從 60% 到 100% 的設(shè)置表示光線主要照在左側(cè)光電池上,而右側(cè)光電池處于黑暗中。從 40% 到 60%的兩個(gè)光電池都受到光照。當(dāng)發(fā)送至任一電機(jī)的電機(jī)控制信號(hào)為 +5 伏時(shí),電機(jī)正向旋轉(zhuǎn)。如果電動(dòng)機(jī)控制信號(hào)為 0 伏,則電機(jī)反向轉(zhuǎn)動(dòng)。
當(dāng)兩個(gè)光電池均受到光照時(shí),兩個(gè)電機(jī)都向前運(yùn)行,從而使機(jī)器人向前直線移動(dòng)。當(dāng)電位計(jì)在 0% 到 40% 之間時(shí),左電機(jī)向前運(yùn)行,右電機(jī)反向運(yùn)行,從而將機(jī)器人向右驅(qū)動(dòng)。在 60% 到 100% 的區(qū)域時(shí),右電機(jī)向前轉(zhuǎn)動(dòng),左電機(jī)反向,則機(jī)器人向左移動(dòng)。
比較器的參考電平來(lái)自分壓器,右控制器的參考電壓設(shè)為 2 伏(電位計(jì)的 40%),左控制器的參考電壓設(shè)為 3 伏(電位計(jì)的 60%)。
弛張振蕩器
通過(guò)使用正負(fù)反饋,可以將比較器配置為弛張振蕩器(圖 6)。
可以使用圖 6 所示的電路創(chuàng)建具有方波輸出的齒張振蕩器(也稱為不穩(wěn)定多諧振蕩器)。振蕩頻率由 R1 和 C1 的電阻電容時(shí)間常數(shù)確定。當(dāng) C1 最初放電(0 伏)時(shí),反相輸入電壓低于同相輸入端的參考電壓。輸出被強(qiáng)制為 5 伏。電容器 C1 通過(guò) R1 充電至參考電壓,此時(shí)輸出降至 0 伏。C1 通過(guò) R1 放電直到其降至參考電壓以下,然后重復(fù)該循環(huán)。參考電壓已添加了遲滯(正)反饋。當(dāng)輸出為 0 伏時(shí),參考電壓為 2.5 伏。當(dāng)輸出為 5 伏時(shí),參考電壓將增加約 1.7 伏,從而使其達(dá)到 4.2 伏。如圖所示,瞬態(tài)響應(yīng)顯示了輸出 (Vo) 和電容器 (Vc) 的電壓波形。
最大振蕩頻率受比較器傳播延遲的限制。本例中,采用具有 40 ns 傳播延遲的 Texas Instruments TLV3201 用于構(gòu)建 10 MHz 振蕩器。該頻率非常接近該比較器的最大值。
時(shí)鐘的恢復(fù)與還原
通過(guò)背板和電纜傳輸?shù)臅r(shí)鐘信號(hào)會(huì)因帶寬限制、碼間干擾 (ISI)、噪聲、反射和串?dāng)_導(dǎo)致性能下降。比較器可用于恢復(fù)時(shí)鐘信號(hào)并將其恢復(fù)為更清晰定義的形式(圖 7)。
在這類型應(yīng)用中,傳播延遲更為關(guān)鍵。比較器可以跟蹤的最大頻率是傳播延遲和輸出轉(zhuǎn)換時(shí)間的函數(shù):
其中:fMAX 是最大觸發(fā)頻率
tRise 是輸出上升時(shí)間
tFall 是輸出下降時(shí)間
tPD LH 是從低到高的傳播延遲
tPD HL 是從高到低的傳播延遲
Texas Instruments LMV7219M5X-NOPB 使用 5 伏工作電源,上升時(shí)間為 1.3 ns,下降時(shí)間為 1.25 ns,兩個(gè)轉(zhuǎn)換方向的典型傳播延遲為 7 ns。這樣產(chǎn)生的最大觸發(fā)頻率為 60.4 MHz。即使采用 2.7 伏電源、更長(zhǎng)的傳播延遲和轉(zhuǎn)換時(shí)間,該比較器速率的最大跳變約為 35 MHz,也足以滿足該 20 MHz 時(shí)鐘的需求。
除了極低的傳播延遲外,LMV7219 還集成了一個(gè)軌至軌推挽輸出級(jí),這意味著較短且均勻的上升和下降時(shí)間。該器件還具有 7.5 mV 內(nèi)部遲滯,能最大程度地減少噪聲影響。
結(jié)論
比較器是連通模擬和數(shù)字世界的橋梁,無(wú)論用于邊緣 IIoT、AI 或 ML 信號(hào)電平和窗口化,還是用于零檢測(cè)、時(shí)鐘恢復(fù),再或者用作振蕩器,電壓比較器都將是一種特別有用的工具。
(來(lái)源:Digi-Key,作者:Art Pini)
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來(lái)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來(lái)
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 探索工業(yè)應(yīng)用中邊緣連接的未來(lái)
- 解構(gòu)數(shù)字化轉(zhuǎn)型:從策略到執(zhí)行的全面思考
- 意法半導(dǎo)體基金會(huì):通過(guò)數(shù)字統(tǒng)一計(jì)劃彌合數(shù)字鴻溝
- 使用手持頻譜儀搭配高級(jí)軟件:精準(zhǔn)捕獲隱匿射頻信號(hào)
- 為什么超大規(guī)模數(shù)據(jù)中心要選用SiC MOSFET?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索