中文在线中文资源,色鲁97精品国产亚洲AV高,亚洲欧美日韩在线一区,国产精品福利午夜在线观看

你的位置:首頁 > EMC安規(guī) > 正文

高性能PCB的SI/PI/EMC設計

發(fā)布時間:2013-04-25 責任編輯:felixsong

【導讀】隨著電子產(chǎn)業(yè)的飛速發(fā)展,電子設備的功能越來越強,集成度越來越高,信號速率也越來越短,PCB的設計也進入了高速時代,其信號完整性(SI)問題、電源完整性(PI)問題以及電磁兼容(EMC/EMI)問題已經(jīng)成為設計工程當中必須解決的核心問題。本文從高性能PCB的SI/PI/EMC仿真設計給予大家知道。

隨著電子設備工作速度的不斷提高,連接設備、電路板、集成電路和器件的互連系統(tǒng)設計越來越成為制約整個系統(tǒng)設計成功的關鍵,以高速高密度PCB設計來說,其信號完整性(SI)問題、電源完整性(PI)問題以及電磁兼容(EMC/EMI)問題已經(jīng)成為設計工程當中必須解決的核心問題。隨著技術的發(fā)展,越來越多的設計人員認同“高速設計就是高頻設計”這一全新理念,圖1很好地詮釋了這一特點。

“短路”特性隨信號速率的變化
圖1:“短路”特性隨信號速率的變化

目前,越來越多的射頻/高頻設計工程師參與并指導高速互聯(lián)設計,且近一半的電路設計人員發(fā)現(xiàn)要進行高性能SI/PI設計,就必須采用3D全波模型來處理關鍵互聯(lián)問題。
Xilinx Virtex Pro X FPGA的測試評估板
圖2:Xilinx Virtex Pro X FPGA的測試評估板

實際上,要在SI/PI/EMI方面實現(xiàn)高性能PCB設計仿真,仿真工具必須具備以下幾點關鍵要求:

第一,必須采用3D全波電磁模型,尤其對關鍵高速走線、過孔、網(wǎng)絡等;第二,能夠仿真模擬PCB上的復雜供電網(wǎng)絡;第三,仿真器(包括場仿真器和路仿真器)必須具備高精度、高速度、大容量的特點;第四,同時提供時域和頻域仿真結果;第五,還必須能與現(xiàn)有的PCB設計流程相兼容。

Ansoft公司的系列電磁場仿真工具再配合專門的SI設計仿真平臺DesignerSI,不僅滿足上述五點要求,而且由于Ansoft場工具均采用獨有的自適應網(wǎng)格剖分技術,因此將電磁場仿真的難度大大降低,長久以來其仿真速度、精度、容量均得到驗證,是工程實用化的工具。場工具幫助互連系統(tǒng)的設計者精確地提取并建立互連系統(tǒng)的3D全波模型,隨后在仿真平臺Ansoft DesignerSI中進行系統(tǒng)驗證,提取串擾、眼圖、誤碼率等時域、頻域信息,用于信號完整性/電源完整性及EMC/EMI設計與仿真。

千兆比特高速信道設計

圖2是Xilinx公司基于Virtex-II Pro X FPGA的測試評估板,其工作信號速率高達10Gbps以上,Xilinx采用Ansoft系列軟件進行虛擬仿真,完成了對該PCB上收/發(fā)高速差分組線的設計優(yōu)化,實現(xiàn)高速通信。在設計初始階段,根據(jù)實際問題將整個高速串行信道分割為相對獨立的子結構或子系統(tǒng),如在本例中可分為封裝、PCB走線和SMA接頭,對各子系統(tǒng)分別進行設計優(yōu)化,并通過場分析抽取、建立三維全波模型,然后在DesignerSI平臺上通過動態(tài)鏈接、協(xié)同仿真功能,將各模塊鏈接形成一個完整的信道進行整體性能驗證。這樣做不僅能通過Ansoft參數(shù)化設計功能實現(xiàn)各關鍵結構的最優(yōu)化設計,而且能夠最大限度地提高仿真效率,比如若想通過對PCB過孔、走線等部分結構的優(yōu)化調(diào)整來提高整體傳輸性能,那么采用這種分解的子系統(tǒng)形式就能幫助設計人員迅速獲得所需數(shù)據(jù),避免重復低效勞動。

DesignerSI仿真結果與測試結果
圖3:DesignerSI仿真結果與測試結果

利用Q2D進行PCB走線的阻抗控制分析,確定差分線的幾何結構和物理參數(shù);利用三維場仿真工具HFSS提取封裝、過孔、SMA連接器、非規(guī)則走線等的全波電磁模型;在DesignerSI中鏈接整個信道模型分別在時頻域中進行系統(tǒng)驗證。

在DesignerSI平臺上導入芯片IBIS/Spice模型,通過與Ansoft場工具的動態(tài)鏈接完成整個信道的總體驗證,得到眼圖并與實測結果對比(見圖3)。

推薦閱讀:

PCB板設計繪制心得

http://hdh-sz.com/gptech-art/80020592

PCB布線在電磁兼容性設計中的影響
http://hdh-sz.com/emc-art/80020280
PCB工程師必看
http://hdh-sz.com/cp-art/80019785


[page]
數(shù)模混合電路板的PI和SI問題

一塊六層PCB板,其工作頻帶在1G以下,電源平面上分有2.5v、3.3v和5v三個電源分割,但具有完整的地平面。首先在SIwave中作諧振場分析以便了解電源/地平面在工作頻帶內(nèi)的整體特性,發(fā)現(xiàn)在工作頻帶內(nèi)(1G以下)會發(fā)生多個諧振現(xiàn)象,有14個諧振頻點(見圖4),同時在SIwave中可以觀察PCB在各諧振頻點上不同的電壓(圖5)。由于工作頻帶內(nèi)的諧振不僅會帶來如電源/地噪聲、SSN等嚴重的電源完整性問題,而且對SI同樣會產(chǎn)生嚴重影響。本例主要考慮通過在相關位置(如諧振場峰值/谷值位置處)加去耦電容來抑制諧振,從而間接改善SI性能。在SIwave中直接模擬該過程,根據(jù)前面得到的諧振分析結果直接仿真去耦電容的影響,為抑制這14個諧振點共加了26個去耦電容,仿真顯示加去耦電容后最低諧振頻點變?yōu)?.0133G,在工作帶寬以外。為了了解對SI的影響,選取了一個跨電源分割的信號網(wǎng)絡做S參數(shù)掃頻分析,比較加去耦電容前后的S參數(shù)變化曲線(圖6a/b),發(fā)現(xiàn)加去耦電容 之后,1G以下信號傳輸特性明顯得到了改善,尤其在700M左右插入損耗和回波損耗有8dB~9dB的改善。

SIwave分析得到的PCB諧振點分布
圖4:SIwave分析得到的PCB諧振點分布
 
諧振頻率為0.4971G的電壓波動情況
圖5:諧振頻率為0.4971G的電壓波動情況

PCB EMI問題仿真

一塊八層PCB,其中黃色走線為PCB上的時鐘信號線,每根時鐘線都與一激勵源相連,為了了解該PCB的電磁輻射特性,首先在SIwave中設置掃頻分析可以清楚觀察到PCB板在各頻點上的電壓波動情況,如圖7所示。
加去耦電容前a和后b的信號網(wǎng)絡IOA8的插入損耗和回波損耗曲線
圖6:加去耦電容前a和后b的信號網(wǎng)絡IOA8的插入損耗和回波損耗曲線

PCB在不同的頻率上的電壓波動圖
圖7:PCB在不同的頻率上的電壓波動圖

1G下PCB的電壓波動圖和空間場分布
圖8:1G下PCB的電壓波動圖和空間場分布

隨后,在SIwave中計算PCB在空間的EMI輻射情況。以1G為例,圖8為PCB元件正面觀察到的電壓波動情況,通過SIwave和Ansoft HFSS之間的動態(tài)鏈接,能夠計算PCB板在三維空間任意位置的電磁場輻射數(shù)據(jù),從而實現(xiàn)虛擬EMI測試。圖8還給出了距離PCB約500mil處的電場分布云圖,對比空間電場分布云圖與PCB上電壓波動云圖可以發(fā)現(xiàn):PCB上電壓波峰/波谷對應的近區(qū)輻射場數(shù)值大,這也與實際情況吻合。同時根據(jù)需要可在 SIwave中直接畫出各個頻點上PCB板在遠區(qū)的輻射場分布。

高速PCB板級設計無論SI還是PI,都是十分具有挑戰(zhàn)性的,而由此產(chǎn)生的EMI問題則更為復雜。采用對虛擬原型進行仿真的方法替代反復試驗的設計方法來優(yōu)化電路板的設計,可以有效縮短設計周期并且節(jié)約設計成本。

推薦閱讀:

PCB板設計繪制心得

http://hdh-sz.com/gptech-art/80020592

PCB布線在電磁兼容性設計中的影響
http://hdh-sz.com/emc-art/80020280
PCB工程師必看
http://hdh-sz.com/cp-art/80019785

要采購工具么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

  • <center id="09kry"></center>

  • 主站蜘蛛池模板: 达州市| 东丰县| 银川市| 湘阴县| 工布江达县| 石柱| 通州区| 龙川县| 喜德县| 潢川县| 南昌市| 平安县| 连州市| 定兴县| 南部县| 乐安县| 宜君县| 巴林右旗| 师宗县| 桃园县| 陵川县| 泰来县| 溧阳市| 理塘县| 洛扎县| 大足县| 潼南县| 阳江市| 都昌县| 朝阳区| 北流市| 抚州市| 清水县| 南宁市| 嘉定区| 通山县| 偏关县| 鸡东县| 新余市| 永安市| 新沂市|