【導讀】設計開關電源的種類復雜多樣化,但是如果設計一個成本低、通用性、高效率的開關電源實屬不易。本文就詳細解析具有電磁兼容性的反激式開關電源的電路設計。下面請看小編對反激式開關電源設計的詳細步驟。
開關直流穩(wěn)壓電源是基于方波電壓的平均值與其占空比成正比以及電感、電容電路的積分特性而形成的。其基本工作原理是,先對輸入交流電壓整流,從而形成脈動直流電壓,經(jīng)過DC-DC變換電路變壓,再通過斬波電路形成了不同脈沖寬度的高頻交流電,然后對其整流濾波輸出需要電壓電流波形。如果輸出電壓波形偏離所需值,便有電流或電壓采樣電路進行取樣反饋,經(jīng)過與比較電路的電壓值進行參數(shù)比較,把差值信號放大,從而控制開關電路的脈沖頻率f和占空比D,以此來控制輸出端的導通狀態(tài)。因此,輸出端便可以得到所需的電壓電流值。
根據(jù)電力系統(tǒng)的實際需要,通過對各個部分進行分析,便可以設計出相應的開關電源產(chǎn)品。
圖1開關電源原理框圖
在設計開關電源時,首先就要面臨如何選擇合適的開關電源控制芯片。在選擇芯片的時候,要既能滿足要求,又不因為選型造成資源的浪費。下面就介紹利用TopswitchⅡ系列開關電源的功率損耗(PD)與電源效率(η),輸出功率(Po)關系曲線,快速選擇芯片的型號,從而完成寬范圍輸入的通用開關電源的設計。
圖2 TOPSwitch芯片內(nèi)部原理圖
開關管保護電路
在開關芯片的漏極D側可以利用VDZ和VD兩個二極管對高頻變壓器的漏感產(chǎn)生的尖峰電壓進行箝位,可保護μ的D-S極間不被擊穿。例如VDZ可以選用瞬態(tài)電壓抑制器P6K200,其反向擊穿電壓為200 V.VD采用反向耐壓為600 V的UF4005($0.0444)型超快恢復二極管,亦稱阻塞二極管。
圖3給出了由TOPSwitch構成的反激式電源的原理圖。其工作過程如下:輸入交流電經(jīng)整流橋BR1整流后再經(jīng)電容C1濾波,變?yōu)槊}動的直流電。反激式變壓器與TOPSwitch將存儲于電容C1的能量傳遞給負載。當TOPswitch開關管導通時,電容C1兩端的電壓加到反激變壓器的原邊,流過原邊繞組的電流線性增加(如若在MOSFET開關管導通的瞬間變壓器副邊電流不為零,則由于副邊感應電勢反向,二極管D2截止,副邊電流變?yōu)榱悖欢判緝?nèi)的能量不能突變,故原邊電流躍變?yōu)楦边呺娏鞯?/ K,K為變壓器變比),變壓器儲存能量;
當MOSFET開關管關斷時,電感原邊電流由于沒有回路(此時,穩(wěn)壓管VR1的擊穿電壓因高于原變壓器的感應電勢而截止)而突變?yōu)榱悖儔浩魍ㄟ^副邊續(xù)流,副邊電流為TOPswitch開關管關斷時原邊電流的K倍,副邊繞組通過二極管D2對電容C2充電,此后,流過變壓器副邊的電流線性下降。二極管D1與穩(wěn)壓管VR1并接于變壓器的原邊以吸收由于變壓器原邊的漏感而產(chǎn)生的高壓毛刺。電阻R1、穩(wěn)壓管V R2、光耦U2與電容C5構成了電壓反饋電路以保證輸出電壓穩(wěn)定。電阻R2與VR2構成一假負載,以保證當電源空載或輕載時輸出電壓穩(wěn)定。電感L1與電容C3構成LC濾波器以防止輸出電壓脈動過大。二極管D3與電容C4構成一整流電路以提供光耦U2光電三極管的偏置電壓。電感L2、電容C6和C7用于降低系統(tǒng)的電磁干擾(EMI)。
圖3反激式電源的應用原理圖
圖4分別給出了輸入電壓220 V(交流),輸出功率為40 W;輸入電壓85 V(交流),輸出功率為24 W和輸入電壓85 V(交流),輸出功率為40 W時的輸出電壓波形。圖4不同電壓輸入條件下的電壓仿真輸出波形
通過仿真試驗,對電源的設計過程進行了認證。總體來說設計的開關電源,輸出波形較為穩(wěn)定,而且電磁兼容性好,抗干擾能力強,適合小功率開關電源的設計制造。直流穩(wěn)壓電源是現(xiàn)代電力電子系統(tǒng)中的重要組成部分,好的直流電源系統(tǒng)是高質(zhì)量現(xiàn)代電子系統(tǒng)的重要保證。
相關閱讀:
有了高壓反激式控制器,視頻安防系統(tǒng)“有如神助”!
技術分享:反激式千瓦級高壓電容器充電器的設計
神級反激式開關電源,在1.1V電壓下點亮了HBLED燈!