【導讀】便攜電子產(chǎn)品電池總量有限,使用頻率又高,電池的使用壽命一直都滿足不了需求。因此,需要通過DC-DC變換器將電源芯片的工作電壓最大限度地降低,才能延長電池的使用壽命。本文介紹了一種DC-DC升壓型開關電源的低壓啟動電路。
各種便攜式電子產(chǎn)品, 如照相機、攝像機、手機、筆記本電腦、多媒體播放器等都需要DC-DC 變換器等電源管理芯片。這類便攜式設備一般使用電池供電,總能量有限, 因此,電源芯片需要最大限度地降低工作電壓,延長電池的使用壽命。傳統(tǒng)DC-DC 的工作電壓一般都在1. 0 V 以上,本文設計了一種DC-DC升壓型開關電源的低壓啟動電路, 啟動電壓降低至0. 8 V,該電路采用兩個在不同電源電壓范圍內(nèi)工作頻率較穩(wěn)定的振蕩器電路, 利用電壓檢測模塊進行合理的切換,解決了低輸入電壓下電路無法正常工作的問題, 并在0. 5μm CMOS 工藝庫( VthN = 0. 72 V, VthP = -0. 97 V) 下仿真。仿真結果表明, 在0. 8 V 低輸入電壓時, 通過此升壓型開關電源, 可以將VDD升高至3. 3 V。
1 電路整體示意圖
DC-DC 升壓型開關電源在低輸入電壓下工作, 利用控制電路導通和關斷功率管, 在功率管導通時, 電感儲存能量; 當功率管關斷時,電感釋放能量, 對輸出電容充電, 輸出電壓升高。當輸入電源低至1. 0 V 以下, 如果DC-DC 芯片的驅(qū)動電壓取自輸入電源,芯片內(nèi)部電路就不能正常工作, DC-DC 便無法啟動; 如果DC-DC 芯片的驅(qū)動電壓取自輸出電壓, 同樣,芯片根本無法啟動及進行任何升壓動作。本文針對輸入電源電壓變化范圍較大, 在考慮商業(yè)成本的情況下, 設計了2 個振蕩器電路:主振蕩器和輔助振蕩器。輔助振蕩器靠輸入電壓供電,0. 8 V 即能起振, 在V DD升至1. 9 V 以前控制功率管的導通與關斷, 使V DD逐步抬升。主振蕩器靠輸出電壓即VDD供電, 在VDD升至1. 9 V 以后以一個較穩(wěn)定的頻率工作,抬升并維持輸出電壓。電路的整體示意圖如圖1所示。該電路包括主振蕩器、輔助振蕩器以及它們的切換電路、帶隙基準電路、PWM 比較器、過壓保護電路、過流保護電路等。
圖1:DC-DC 升壓型開關電源芯片的整體示意圖
2 主振蕩器的設計
本文所設計的主振蕩器采用如圖2 所示的環(huán)形振蕩器結構。VC1, VC2 分別為過壓保護電路, PWM 比較器的輸出信號, MP10和MP11 為帶隙基準提供的鏡像電流, 合理的控制鏡像電流和電容C1 , C2 的大小, 即能夠使主振蕩器在1. 9~ 8 V 的V DD區(qū)間輸出350 kHz 左右較穩(wěn)定的振蕩頻率。
圖2:主振蕩器電路
[member]
[page]
3 輔助振蕩器的設計
輔助振蕩器電路采用環(huán)形振蕩器結構, 它利用亞閾值導通的原理, 使得起振電壓降至0. 8 V, 但是這個輔助振蕩器在0. 8~ 1. 9 V 的VDD區(qū)間里頻率變化很大, 會在電路啟動階段造成很大的浪涌電流, 造成系統(tǒng)的不穩(wěn)定。
設計的輔助振蕩器克服了以上缺點, 既保證了在0. 8 V 起振, 又避免了振蕩頻率變化過大, 但是,在輔助振蕩器關斷之后由于工藝偏差可能會在R, S端出現(xiàn)不確定狀態(tài), 導致功耗過大,并造成后續(xù)電路不能正常工作。本文在此基礎上加以改進, 增加M17 管, M18管, 所設計的輔助振蕩器如圖3 所示。
圖3:輔助振蕩器電路
圖3 中, M1~ M13 是低輸入電壓偏置電流電路,這個電路的主要功能是在低輸入電壓下產(chǎn)生一個恒定的納安級的偏置電流。這一不隨電源電壓變化的偏置電流將為圖3 所示的輔助振蕩器提供偏置。M8 ~ M13為啟動電路, M3 , M4 都工作在亞閾值區(qū):
聯(lián)立式(1) ~ 式(4),可以得到:
式中: K = (W/ L ) M4 / ( W/ L ) M3 ,通過式(5) 可以發(fā)現(xiàn),偏置電流I M1 , I M2與輸入電源無關。
恒流源I I 和I 4 對電容C1 充放電, 該振蕩器的核心模塊是兩個比較器, M21 , M22 組成COMP1, 該比較器閾值較高, 為M22 管的導通閾值, 記為V H = V th。M22 ,M23 , M24 , M25 , M26 , R2 組成COMP2, 該比較器閾值較低, 記為VL :
因為M26管的電流很小, 寬長比很大, 故:
SE 為輔助振蕩器切換信號, SEB 為SE 的反信號。當V DD低于1. 9 V 時, SE 為高電平, M17 , M18 都截止, 不影響R, S 觸發(fā)器的翻轉(zhuǎn), 輔助振蕩器工作, 開關S1 斷開, S2 閉合; 當VDD 高于1. 9 V 時, SE 為低電平, 輔助振蕩器關斷, 開關S1 閉合, S2 斷開, M17 , M18 都導通, R=1, S= 0, AU XCLK 被鎖定為高電平, 既減小了功耗, 也避免了輔助振蕩器關斷之后R, S 端出現(xiàn)不確定狀態(tài)。
4 電路整體仿真結果與分析
整體電路在0. 5μm CMOS 工藝庫( V thN= 0. 72 V,VthP = - 0. 97 V) 下仿真,仿真條件為VIN = 0. 8 V, 仿真結果如圖4 所示。
圖4:兩個振蕩器的切換
從圖4 可以看出, 電路啟動后, 首先輔助振蕩器V( aux clk) 起振, V DD逐漸升高, 升高至1. 4 V 時,主振蕩器V( mainclk) 起振, 但此時只有輔助振蕩信號通過開關S2 傳到功率管的柵極, 當VDD升高至1. 9 V 時,輔助振蕩器關掉, 主振蕩器信號通過開關S1 傳到功率管的柵極, VDD繼續(xù)升高至設定的輸出電壓3. 3 V 以后,由反饋電路控制主振蕩器的開啟與關斷, 來維持這一輸出電壓。
5 結 語
本文針對輸入電源電壓變化范圍較大, 設計了兩種結構不同的振蕩器, 其在在不同電源電壓范圍內(nèi)工作的頻率較穩(wěn)定,并利用電壓檢測模塊進行合理的切換, 解決了低輸入電壓下電路無法啟動的問題, 是一款適用于商業(yè)開發(fā)的DC-DC 升壓型開關電源。