【導讀】雖然MOSFET的芯片和封裝不斷改進,但是它們是否能有效的應用于電源產品依然面臨著不小的挑戰。除了器件結構和加工工藝,MOSFET的性能還受其他幾個周圍相關因素的影響:如封裝阻抗、印刷電路板(PCB)布局、互連線寄生效應和開關速度等。
事實上,真正的開關速度取決于其他幾個因素,例如切換的速度和保持柵極控制的能力,同時抑制柵極驅動回路電感帶來的影響。同樣,低柵極閾值還會加重Ldi/dt問題。根據具體應用建立FET性能模型并采用電子表格記錄數據的經驗豐富的設計人員,亦未能從熟悉的模型中獲得雖然MOSFET的芯片和封裝不斷改進,但是它們是否能有效的應用于電源產品依然面臨著不小的挑戰。除了器件結構和加工工藝,MOSFET的性能還受其他幾個周圍相關因素的影響:如封裝阻抗、印刷電路板(PCB)布局、互連線寄生效應和開關速度等。滿意的結果。
正因為了解電路中晶體管的性能很重要,所以我們將選用半橋拓撲。這種拓撲是電力電子裝置最常用的拓撲之一。這些例子重點介紹了同步壓降轉換器——一個半橋拓撲的具體應用。
1、共源極電感效應
圖1半橋電路
圖1為具備雜散電感和電阻(由封裝鍵合線、引線框以及電路板布局和互連線帶來)等寄生效應的半橋電路。共源電感(CSI)傾向于降低控制FET(高邊FET)的導通和關斷速度。如果與柵極驅動串聯,通過CSI的電壓加至柵極驅動上,可使FET處于導通狀態(條件:V = -Ldi/dt),從而延遲晶體管的關斷。這也會增大控制FET的功耗,如圖2所示。
圖2 功耗曲線
更高的功耗會導致轉換效率降低。另外,由于雜散電感,電路出現尖峰電壓的可能性很高。如果這些尖峰電壓超過器件的額定值,可能會引起故障。
為了消除或使這種寄生電感最小化,設計人員必須采用類似無引腳或接線柱的DirecFET等封裝形式,并采用使互連線阻抗最小化的布局。與標準封裝不同,DirecFET無鍵合線或引線框。因此,它可極大地降低導通電阻,同時大幅降低開關節點的振鈴,抑制開關損耗。
2、緩和C dv/dt感應導通
影響性能的另一個因素是C dv/dt感應導通(和由此產生的擊穿)。C dv/dt通過柵漏電容CGD的反饋作用(引起不必要的低邊FET導通),使低邊(或同步)FET出現柵極尖峰電壓。
實際上,當Q2的漏源極的電壓升高時,電流就會經由柵漏電容CGD 流入總柵極電阻RG。因此,它會導致同步FET Q2的柵極出現尖峰電壓。當該柵極電壓超出規定的閾值時,它就會被迫導通。典型同步壓降轉換器拓撲中,同步FET Q2在這種工作模式下的主要波形。
若要準確地確定低邊或同步MOSFET Q2的這種現象帶來的功耗,需要對其漏源電壓VDS_Q2 進行一段時間的鉗位控制。在鉗位控制時段,其功耗約為:
在這個等式中,Vcl 代表VDS_Q2 的鉗位電壓值;fs代表開關頻率;Irrm 代表峰值反向恢復電流;tcl 代表反向恢復電流由Irrm 降至零所需的時間。由上式可以看出,C dv/dt感應損耗是Vin、dv/dt和開關頻率的函數,反過來,它也會受驅動速度、柵極電荷Qg、反向恢復電荷Qrr和布局的影響。因此,要想抑制這種不必要的導通,需要選擇具備低荷比(QGD/QGS1)的適用同步MOSFET Q2。在QGD/QGS1中,QGD代表柵漏米勒電荷,QGS1代表柵極電壓達到閾值之前的柵源電荷。
盡管降低CDS 或增大CGS可降低C dv/dt感應電壓,但Q2的C dv/dt感應導通還取決于漏源電壓 VDS-Q2 和閾值電壓Vth。由于柵極閾值電壓會隨著溫度的升高而降低,因此這個問題在溫度升高情況下會進一步惡化。因此,低閾值FET對C dv/dt問題尤其敏感。
在實際應用中,要想評估同步MOSFET Q2,需要了解柵極電容的柵極電荷性能。因此,聰明的辦法是調查C dv/dt感應導通,這需要查看累積的米勒電荷。為避免Q2錯誤導通,設計人員必須確保當漏源電壓VDS-Q2 達到輸入電壓時,它必須比柵源電容的總電荷低。