選擇合適的電池電量計(jì),實(shí)現(xiàn)高精準(zhǔn)度的電池建模
發(fā)布時(shí)間:2017-10-26 來源:Nazzareno (Reno) Rossetti,Bakul Damle 責(zé)任編輯:wenwei
【導(dǎo)讀】穿戴式設(shè)備正在推動一個(gè)極具吸引力且成長快速的市場,其中智能手表(Smart Watch)持續(xù)保持主導(dǎo)地位。在這種密集且競爭激烈的環(huán)境下,每一個(gè)制造商都力爭將產(chǎn)品率先投入市場,而消費(fèi)者則需要其裝置具有最精確、最長的電池運(yùn)作時(shí)間(圖1)。本文討論與電池容量管理關(guān)鍵功能密切相關(guān)的要求,并提出一種能夠克服挑戰(zhàn)的顛覆性技術(shù)。
圖1:智能手表發(fā)出充電完成的訊號。
上市時(shí)間的挑戰(zhàn)
最佳的電池性能依賴于驅(qū)動電量計(jì)算法的高精準(zhǔn)度及高質(zhì)量電池模型。花費(fèi)大量時(shí)間進(jìn)行客制的特性分析能夠獲得高精準(zhǔn)度的電池性能、最小化電池電量(SOC)的誤差,以及正確預(yù)測電池何時(shí)接近沒電的狀態(tài)。
儲存在電池中的能量(以mAhr為單位)依賴于多種參數(shù),如負(fù)載和溫度。因此,開發(fā)者必須在各種條件下對電池進(jìn)行特性分析。在選取了與電池行為一致的模型后,即可將其裝載到電量計(jì)芯片。這種嚴(yán)密的監(jiān)控過程能夠?qū)崿F(xiàn)更安全的電池充電和放電。
由于電量計(jì)特性化只能滿足大量生產(chǎn)的客戶,不能顧及所有其他客戶,不僅帶來了上市時(shí)間的問題,也成為制造商發(fā)展的阻礙。傳統(tǒng)上,IC供貨商專注于高產(chǎn)量的應(yīng)用,因?yàn)槟P瓦x取通常需要大量的實(shí)驗(yàn)室工作,而只有少數(shù)IC供貨商擁有所需的資源。
電池運(yùn)作時(shí)間的挑戰(zhàn)
較差電池模型所帶來的嚴(yán)重后果之一就是運(yùn)作時(shí)間估算不準(zhǔn)確。典型的智能手表使用模型在為期1天的循環(huán)過程中,包括5小時(shí)主動狀態(tài)(包括對時(shí)、通知、app使用、音樂播放、通話,以及訓(xùn)練)和19小時(shí)被動狀態(tài)(僅對時(shí))。為期1天的循環(huán)中,如果裝置在主動模式下的功耗為40mA,在被動模式下的功耗為4mA,那么將消耗總共276mAh,正好是典型智能手表電池的大約容量。為避免裝置操作的非預(yù)期或過早中斷,就必須準(zhǔn)確預(yù)測電池運(yùn)作時(shí)間。
運(yùn)作時(shí)間的持續(xù)時(shí)間也同樣重要。被動模式下,同一電池可能維持長達(dá)69小時(shí)(276mAh/4mA)。功耗為50μA的典型電量計(jì)將縮短大約52分鐘的電池被動運(yùn)作時(shí)間,是不可忽略的時(shí)間量。
EZ解決方案
Maxim Integrated開發(fā)了一種算法,能夠準(zhǔn)確估算電池的充電狀態(tài),且能夠安全地運(yùn)用在大多數(shù)電池上。該算法在研究了常見鋰電池特性后開發(fā)。
ModelGauge m5 EZ算法(簡稱EZ)采用針對具體應(yīng)用的電池模型,嵌入到電量計(jì)IC內(nèi)部。設(shè)計(jì)師利用評估套件所提供的簡單組態(tài)精靈,可產(chǎn)生電池模型。系統(tǒng)設(shè)計(jì)師只需提供三條訊息:
1.容量(通常會顯示在電池卷標(biāo)或數(shù)據(jù)表);
2.沒電時(shí)所對應(yīng)的電池電壓為(依賴于應(yīng)用情形);
3. 電池充電電壓(是否高于4.275V)。
使用EZ,系統(tǒng)設(shè)計(jì)師不再需要執(zhí)行特性分析,因?yàn)檫@實(shí)際上已由電量計(jì)供貨商完成。
包含在EZ算法中的多種適應(yīng)機(jī)制能夠幫助電量計(jì)學(xué)習(xí)電池特性,進(jìn)一步提高精準(zhǔn)度。這樣的算法可保證電池電壓接近沒電時(shí),電量計(jì)輸出收斂到0%,因此,電量計(jì)能夠在電池電壓達(dá)到?jīng)]電的同時(shí)準(zhǔn)確指示SOC為0%。
如果我們假設(shè)SOC預(yù)測的系統(tǒng)誤差預(yù)算為3%,EZ模型能夠覆蓋95.5%的放電測試用例——非常接近人工定制模型的性能,后者覆蓋97.7%的測試用例。如圖2所示,當(dāng)電池接近沒電時(shí),EZ方法的表現(xiàn)也是一樣的,這點(diǎn)特別重要。
圖2:EZ系統(tǒng)誤差性能。
對于許多使用者來說,僅知道SOC或剩余電量是不夠的,他們真正想知道的是剩余電量可提供多少運(yùn)作時(shí)間。最簡單的方法,例如將剩余電量除以當(dāng)前或預(yù)期負(fù)載,可能會造成估算結(jié)果過于樂觀。EZ算法能夠根據(jù)電池參數(shù)、溫度、負(fù)載效應(yīng),以及應(yīng)用的空電壓,提供精準(zhǔn)度高出很多的剩余運(yùn)作時(shí)間估算結(jié)果。
有了EZ算法,大產(chǎn)量的制造商可將EZ作為快速開發(fā)的起始點(diǎn);在具有運(yùn)作雛型之后,即可選擇精細(xì)調(diào)諧過的電池模型。而小產(chǎn)量的制造商可利用EZ為電池建立配對模型,并可以兼容絕大多數(shù)電池。
采用ModelGauge m5 EZ的單電池電量計(jì)
EZ算法被內(nèi)建到MAX17055獨(dú)立式單電池電量計(jì)IC中。裝置擁有0.7μA關(guān)機(jī)電流、7μA休眠模式電流和18μA運(yùn)作電流,可理想用于電池供電的穿戴式裝置,還可透過I2C接口存取數(shù)據(jù)和控制緩存器。
系統(tǒng)誤差的競爭產(chǎn)品分析
圖3所示為系統(tǒng)誤差的競爭產(chǎn)品分析。從柱狀圖可以看出,接近電池沒電時(shí),MAX17055在大多數(shù)測試用例(26個(gè)中的15個(gè))下的誤差在1%以內(nèi)。
圖3:系統(tǒng)誤差的競爭產(chǎn)品分析。
運(yùn)作時(shí)間精準(zhǔn)度競爭優(yōu)勢
接近沒電時(shí)的低誤差可確保電池電量最佳的使用,最大程度延長運(yùn)作時(shí)間,以及最小化操作裝置的非預(yù)期或過早中斷。
運(yùn)作時(shí)間延長競爭優(yōu)勢
使用具有低靜態(tài)電流的電量計(jì)IC,可有效延長運(yùn)作時(shí)間。MAX17055的靜態(tài)電流為18μA,比最相近競爭裝置的靜態(tài)電流低64%。此外,在低功耗休眠模式下,裝置僅消耗7μA電流。將其應(yīng)用到以上討論的情況,可將受影響的運(yùn)作時(shí)間從52分鐘降低到7分鐘——實(shí)質(zhì)性的性能改善。
總結(jié)
本文重點(diǎn)討論了有效率的電量計(jì)系統(tǒng)中電池建模的重要性,以最大化電池運(yùn)作時(shí)期的精準(zhǔn)度和持續(xù)時(shí)間,還探討了取得高精準(zhǔn)度電池模型的障礙,這一障礙將延長上市時(shí)間、影響低產(chǎn)量電池應(yīng)用的擴(kuò)散。MAX17055內(nèi)建一種以ModelGaugem5EZ算法為基礎(chǔ)的顛覆性方法,使電池系統(tǒng)開發(fā)更快速、更簡單、更具成本效益,并為廣泛的應(yīng)用提供更好得電池性能。
作者:Nazzareno (Reno) Rossetti,Maxim Integrated資深作者;Bakul Damle,移動電源事業(yè)管理部總監(jiān)。
推薦閱讀:
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡介
- 如何通過基本描述找到需要的電容?
技術(shù)文章更多>>
- 破局時(shí)效,跨越速運(yùn)領(lǐng)航零擔(dān)快運(yùn)新征途
- 瑞典名企Roxtec助力構(gòu)建安全防線
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 第二十二屆中國國際軟件合作洽談會在成都順利舉行
- 混合信號示波器的原理和應(yīng)用
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢想電子
模擬鎖相環(huán)
耐壓測試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池