如何利用ΔVBE概念來產(chǎn)生穩(wěn)定的輸出電流
發(fā)布時間:2021-03-17 來源:Doug Mercer 和 Antoniu Miclaus 責(zé)任編輯:wenwei
【導(dǎo)讀】本實(shí)驗(yàn)旨在研究如何利用ΔVBE概念來產(chǎn)生穩(wěn)定(對輸入電壓電平的變化較不敏感)的輸出電流。使用反饋來構(gòu)建在一定的電源電壓范圍內(nèi)產(chǎn)生恒定或調(diào)節(jié)輸出電流的電路。
材料
● ADALM2000 主動學(xué)習(xí)模塊
● 無焊試驗(yàn)板
● 一個500 Ω可變電阻、電位計
● 一個100 Ω電阻
● 三個小信號NPN晶體管(2N3904)
● 三個小信號PNP晶體管(2N3906)
說明
在無焊試驗(yàn)板上構(gòu)建圖1所示的電路。藍(lán)色方框表示ADALM2000的連接位置。PNP晶體管Q1、Q2和Q3形成增益為2的電流鏡;輸出電流是輸入電流的2倍。NPN晶體管Q4、Q5和Q6以及可變電阻R1形成電路的ΔVBE部分。電阻R2用于測量隨電路上的電壓變化(示波器通道1)在電路中流動的電流(示波器通道2)。
圖1.浮動電流源(吸電流連接到負(fù)電源)。
輸出電流通過R1設(shè)置。Q4與Q5和Q6的并聯(lián)組合之間的VBE差(ΔVBE)出現(xiàn)在R1上。PNP鏡(Q1、Q2和Q3)的增益為2(假定它們的大小相同)。因此,Q4中的電流是Q5和Q6組合電流的兩倍。我們再假定Q4、Q5和Q6的大小也相同,電流密度比為4,VBE差將為:
由于這個等式中的絕對溫度項,電流將與絕對溫度成正比。在某些情況下,這個特征可能有用,但在其他情況下,可能不適宜。
硬件設(shè)置
試驗(yàn)板電路連接如圖2所示。
圖2.浮動電流源(吸電流連接到負(fù)電源)試驗(yàn)板電路。
程序步驟
將波形發(fā)生器W1配置為三角波,頻率為100 Hz,幅度為10 V p-p,偏移為0 V。示波器顯示應(yīng)同時在電壓與時間和XY模式中設(shè)置,通道1在水平軸上,通道2在垂直軸上。確保在完成并反復(fù)檢查接線之后,再打開電源。
圖3.浮動電流源(吸電流連接到負(fù)電源)示波器XY圖示例。
圖4.使用理想組件的浮動電流源(吸電流連接到負(fù)電源)LTspice XY圖示例。
證明電路的浮動特性
在圖1中,我們以負(fù)電源作為電路負(fù)極參考。要證明此電路是真正的浮動電流源,按圖5所示重新排列試驗(yàn)板并重復(fù)測量。
圖5.浮動電流源(源電流連接到正電源)。
硬件設(shè)置
試驗(yàn)板電路連接如圖6所示。
圖6.浮動電流源(吸電流連接到正電源)試驗(yàn)板電路。
程序步驟
將波形發(fā)生器W1配置為三角波,頻率為100 Hz,幅度為10 V p-p,偏移為0 V。示波器顯示應(yīng)同時在電壓與時間和XY模式中設(shè)置,通道1在水平軸上,通道2在垂直軸上。確保在完成并反復(fù)檢查接線之后,再打開電源。
圖7.浮動電流源(吸電流連接到正電源)XY圖。
圖8.使用理想組件的浮動電流源(吸電流連接到正電源)LTspice XY圖示例。
問題:
通過分析電路的LTspice®圖,電流源保持相對恒定電流所需的最小電壓是多少?
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動化和互聯(lián)化的未來
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動放大器系列
技術(shù)文章更多>>
- 探索工業(yè)應(yīng)用中邊緣連接的未來
- 解構(gòu)數(shù)字化轉(zhuǎn)型:從策略到執(zhí)行的全面思考
- 意法半導(dǎo)體基金會:通過數(shù)字統(tǒng)一計劃彌合數(shù)字鴻溝
- 使用手持頻譜儀搭配高級軟件:精準(zhǔn)捕獲隱匿射頻信號
- 為什么超大規(guī)模數(shù)據(jù)中心要選用SiC MOSFET?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索