探索高壓輸電——第2部分:電壓源換流器
發(fā)布時(shí)間:2021-07-08 責(zé)任編輯:wenwei
【導(dǎo)讀】VSC目前已成為首選實(shí)施對(duì)象,原因如下:VSC具有較低的系統(tǒng)成本,因?yàn)樗鼈兊呐湔颈容^簡(jiǎn)單。VSC實(shí)現(xiàn)了電流的雙向流動(dòng),更易于反轉(zhuǎn)功率流方向。VSC可以控制AC側(cè)的有功和無(wú)功功率。VSC不像LCC那樣依賴于AC網(wǎng)絡(luò),因此它們可以向無(wú)源負(fù)載供電并具有黑啟動(dòng)能力。使用絕緣柵雙極晶體管(IGBT)閥,則無(wú)需進(jìn)行晶閘管所需的換流操作,并可實(shí)現(xiàn)雙向電流流動(dòng)。
該系列文章的第一部分介紹了電網(wǎng)換相換流器(LCC)。這篇文章將討論電壓源換流器(VSC)并比較兩種拓?fù)浣Y(jié)構(gòu)。
VSC目前已成為首選實(shí)施對(duì)象,原因如下:VSC具有較低的系統(tǒng)成本,因?yàn)樗鼈兊呐湔颈容^簡(jiǎn)單。VSC實(shí)現(xiàn)了電流的雙向流動(dòng),更易于反轉(zhuǎn)功率流方向。VSC可以控制AC側(cè)的有功和無(wú)功功率。VSC不像LCC那樣依賴于AC網(wǎng)絡(luò),因此它們可以向無(wú)源負(fù)載供電并具有黑啟動(dòng)能力。使用絕緣柵雙極晶體管(IGBT)閥,則無(wú)需進(jìn)行晶閘管所需的換流操作,并可實(shí)現(xiàn)雙向電流流動(dòng)。
表1對(duì)LCC和VSC進(jìn)行了對(duì)比。VSC的電壓電平通常在150kV-320kV范圍內(nèi),但一些電壓電平可高達(dá)500kV。VSC有幾種不同的類型。讓我們來(lái)看看兩電平、三電平和模塊化多電平。
表1:換流器比較
*參見2016年電氣與電子工程師協(xié)會(huì)(IEEE)第16屆國(guó)際環(huán)境與電氣工程會(huì)議文章“LCC-HVDC和VSC-HVDC技術(shù)與應(yīng)用的綜述。”
兩電平電壓源換流器
如圖1所示,兩電平VSC具有IGBT,每個(gè)IGBT具有與其并聯(lián)的反向二極管。每個(gè)閥包括多個(gè)串聯(lián)的IGBT/二極管組件。使用脈寬調(diào)制(PWM)控制IGBT,以幫助形成波形。因?yàn)镮GBT在實(shí)現(xiàn)PWM時(shí)多次導(dǎo)通關(guān)斷,所以會(huì)發(fā)生開關(guān)損耗,而諧波是一個(gè)因素。
圖1:兩電平VSC(HVDC換流器圖片由維基百科提供)
三電平電壓源換流器
如圖2所示,三電平VSC改善了諧波問題。三電平換流器每相有四個(gè)IGBT閥。其中兩個(gè)二極管閥用于鉗位電壓,但您可以用IGBT代替它們,以獲得更好的可控性。打開頂部的兩個(gè)IGBT獲得較高的電壓電平,打開中間的兩個(gè)IGBT獲得中間(或零)電壓電平,打開底部的兩個(gè)閥獲得較低的電壓電平。
圖2:三電平VSC(HVDC換流器圖片由維基百科提供)
模塊化多電平換流器
MMC與另兩種換流器不同,因?yàn)槊總€(gè)閥就是一個(gè)具有內(nèi)置式平流電容器的換流器模塊。MMC取代了含有多個(gè)IGBT的閥,它具有多個(gè)級(jí)聯(lián)的換流器模塊。其中每一個(gè)模塊都代表了特定的電壓電平。MMC中的換流器模塊是半橋式或全橋式換流器。
圖3:模塊化換流器類型(HVDC換流器圖片由維基百科提供)
MMC方法顯著提高了諧波性能,以致通常不需要濾波。它也比兩電平和三電平VSC更有效,因?yàn)樗鼪]有與IGBT閥相同的開關(guān)損耗。
圖4:波形輸出(圖片由SVC PLUS VSC技術(shù)提供)
為了監(jiān)控功率因數(shù)、電壓和電流電平,可在配站交流和直流的可測(cè)量側(cè)測(cè)量信號(hào)。在接收到該信息時(shí),換流器控制裝置可以做出所需的調(diào)整,以維持穩(wěn)定的功率電平和適當(dāng)?shù)墓β室驍?shù)。保護(hù)繼電器系統(tǒng)或智能電子器件(IED)收集信號(hào)信息。請(qǐng)參見圖5。
圖5:信號(hào)解釋
使用全差分隔離放大器的隔離電流和電壓測(cè)量是TI參考設(shè)計(jì)之一,可以測(cè)量交流和直流信號(hào)。設(shè)計(jì)指南解釋了如何使用隔離運(yùn)算放大器調(diào)節(jié)信號(hào)以增加振幅,并抑制任何共模電壓和噪聲。具有板載ADC的MCU將分析和解釋此信號(hào)。根據(jù)波形確定的信息反饋到換流器的控制裝置,從而將對(duì)不斷變化的相位和電壓電平進(jìn)行調(diào)整以保持穩(wěn)定性。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來(lái)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來(lái)
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 探索工業(yè)應(yīng)用中邊緣連接的未來(lái)
- 解構(gòu)數(shù)字化轉(zhuǎn)型:從策略到執(zhí)行的全面思考
- 意法半導(dǎo)體基金會(huì):通過(guò)數(shù)字統(tǒng)一計(jì)劃彌合數(shù)字鴻溝
- 使用手持頻譜儀搭配高級(jí)軟件:精準(zhǔn)捕獲隱匿射頻信號(hào)
- 為什么超大規(guī)模數(shù)據(jù)中心要選用SiC MOSFET?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
分頻器
風(fēng)力渦輪機(jī)
風(fēng)能
風(fēng)扇
風(fēng)速風(fēng)向儀
風(fēng)揚(yáng)高科
輔助駕駛系統(tǒng)
輔助設(shè)備
負(fù)荷開關(guān)
復(fù)用器
伽利略定位
干電池
干簧繼電器
感應(yīng)開關(guān)
高頻電感
高通
高通濾波器
隔離變壓器
隔離開關(guān)
個(gè)人保健
工業(yè)電子
工業(yè)控制
工業(yè)連接器
工字型電感
功率表
功率電感
功率電阻
功率放大器
功率管
功率繼電器