-
如何做好開關(guān)電源設(shè)計最重要的一步?(一)
所有開關(guān)電源設(shè)計的非常重要的一步就是印制電路板(PCB)的線路設(shè)計。如果這部分設(shè)計不當(dāng),PCB也使電源工作不穩(wěn)定,發(fā)射出過量的電磁干擾(EMI)。設(shè)計師的工作就是在理解電路工作過程的基礎(chǔ)上,保證PCB設(shè)計合理。
2019-09-04
開關(guān)電源 設(shè)計 重要步驟
-
告別效率損耗源,這款器件隨時為大電流LED供電
高功率LED在現(xiàn)代照明系統(tǒng)中的應(yīng)用數(shù)量不斷激增,涵蓋汽車前照燈、工業(yè)/商業(yè)標(biāo)識、建筑照明以及各種消費電子等應(yīng)用。行業(yè)之所以轉(zhuǎn)向LED技術(shù),是因為固態(tài)照明與傳統(tǒng)光源相比具有明顯的優(yōu)勢:電能轉(zhuǎn)換為光輸出不僅效率高,而且使用壽命長。
2019-09-04
效率損耗 大電流 LED供電
-
干貨:電路設(shè)計的全過程(含原理圖)
開關(guān)電源的設(shè)計是一份非常耗時費力的苦差事,需要不斷地修正多個設(shè)計變量,直到性能達(dá)到設(shè)計目標(biāo)為止。本文step-by-step 介紹反激變換器的設(shè)計步驟,并以一個6.5W 隔離雙路輸出的反激變換器設(shè)計為例,主控芯片采用NCP1015。
2019-09-03
電路設(shè)計 原理
-
一文帶你認(rèn)識全類型“電阻”!
電阻(Resistance,通常用“R”表示),是一個物理量,在物理學(xué)中表示導(dǎo)體對電流阻礙作用的大小。導(dǎo)體的電阻越大,表示導(dǎo)體對電流的阻礙作用越大。不同的導(dǎo)體,電阻一般不同,電阻是導(dǎo)體本身的一種特性。電阻將會導(dǎo)致電子流通量的變化,電阻越小,電子流通量越大,反之亦然。而超導(dǎo)體則沒有電阻。
2019-09-02
電阻 分類 原理
-
如何提高晶體管的開關(guān)速度
晶體管的開關(guān)速度即由其開關(guān)時間來表征,開關(guān)時間越短,開關(guān)速度就越快。BJT的開關(guān)過程包含有開啟和關(guān)斷兩個過程,相應(yīng)地就有開啟時間ton和關(guān)斷時間toff,晶體管的總開關(guān)時間就是ton與toff之和。
2019-09-02
晶體管 開關(guān)速度
-
開關(guān)電源為啥有時候會叫?如何消除?
穩(wěn)壓電源電路輸出的開關(guān)電流的頻率,或周期性脈沖群的周期頻率,或毛刺的周期頻率落入20~20kHz的音頻范圍,且周期性變化的電流經(jīng)過電感線圈而產(chǎn)生交變磁場,使得該電感線圈在交變磁場作用下像“喇叭”一樣在幾乎固定的頻率上產(chǎn)生機械振動而發(fā)出嘯叫。
2019-09-02
開關(guān)電源 嘯叫
-
以實例分析FPGA電源設(shè)計的特性及規(guī)范約束
作為一種復(fù)雜的集成電路,F(xiàn)PGA系統(tǒng)供電的電源的設(shè)計與一般的電子系統(tǒng)相比,要求也更高,需要具備高精度、高密度、可控性、高效及小型化等的特點。本文系統(tǒng)介紹了FPGA電源的不同特性,同時會通過實例,讓工程師更深入地了解各特性的意義,以及FPGA規(guī)范約束及其對電源設(shè)計的影響,以便快速完成FPGA系...
2019-08-30
FPGA 電源設(shè)計
-
關(guān)于“陶瓷電容”的秘密!
1900年意大利L.隆巴迪發(fā)明陶瓷介質(zhì)電容器。30年代末人們發(fā)現(xiàn)在陶瓷中添加鈦酸鹽可使介電常數(shù)成倍增長,因而制造出較便宜的瓷介質(zhì)電容器。
2019-08-29
陶瓷電容 分類
-
收藏!5V轉(zhuǎn)3.3V電平的19種方法技巧
標(biāo)準(zhǔn)三端線性穩(wěn)壓器的壓差通常是 2.0-3.0V。要把 5V 可靠地轉(zhuǎn)換為 3.3V,就不能使用它們。壓差為幾百個毫伏的低壓降 (Low Dropout, LDO)穩(wěn)壓器,是此類應(yīng)用的理想選擇。圖 1-1 是基本LDO 系統(tǒng)的框圖,標(biāo)注了相應(yīng)的電流。從圖中可以看出, LDO 由四個主要部分組成:
2019-08-29
LDO穩(wěn)壓器 齊納二極管
- 智能終端的進(jìn)化論:邊緣AI突破能耗與安全隱私的雙重困局
- 水泥電阻技術(shù)深度解析:選型指南與成本對比
- 滑動分壓器的技術(shù)解析與選型指南
- 如何通過 LLC 串聯(lián)諧振轉(zhuǎn)換器優(yōu)化LLC-SRC設(shè)計?
- 超聲波清洗暗藏"芯片密碼":二氧化硅顆粒撞擊機理揭秘
- 運動追蹤+沖擊檢測雙感知!意法半導(dǎo)體微型AI傳感器開啟智能設(shè)備新維度
- 線繞電阻與金屬氧化物電阻技術(shù)對比及選型指南
- 拓?fù)鋬?yōu)化:解鎖電池供電設(shè)備高效設(shè)計密碼
- 鋁殼電阻技術(shù)解析:原理、優(yōu)勢與產(chǎn)業(yè)生態(tài)全景
- 厚膜電阻在消費電子電源管理及家電控制中的技術(shù)應(yīng)用與創(chuàng)新
- 從光伏到充電樁,線繞電阻破解新能源設(shè)備浪涌防護(hù)難題
- GMSL雙模解析:像素模式和隧道模式如何突破傳輸瓶頸
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall