確保EMC高性能:利用無(wú)扼流圈收發(fā)器簡(jiǎn)化CAN總線
發(fā)布時(shí)間:2016-05-09 責(zé)任編輯:susan
【導(dǎo)讀】汽車(chē)內(nèi)電子元器件的密度逐年增加,我們需要確保車(chē)內(nèi)網(wǎng)絡(luò)在電磁兼容性(EMC)方面能保持高性能。這樣的話,當(dāng)不同子系統(tǒng)被集成在一個(gè)較大解決方案中,并且在常見(jiàn)(嘈雜)環(huán)境中運(yùn)行時(shí),這些子系統(tǒng)能夠正常運(yùn)轉(zhuǎn)。
雖然有很多不同的車(chē)內(nèi)網(wǎng)絡(luò)互連標(biāo)準(zhǔn),并且汽車(chē)原始設(shè)備制造商 (OEM) 對(duì)于EMC也有多種不同的要求,這篇文章主要討論一個(gè)已經(jīng)被證明具有特別挑戰(zhàn)性的話題:一個(gè)控制器局域網(wǎng) (CAN) 總線的射頻 (RF) 放射。
CAN使用均衡的差分信令來(lái)發(fā)送波特率,高達(dá)1Mbps(或者更高,前提是使用“靈活數(shù)據(jù)速率”變量)的二進(jìn)制數(shù)據(jù)。理想情況下,差分信令的使用避免了所有外部噪聲耦合。由于每一半差分對(duì)(被稱(chēng)為CANH和CANL)在變化時(shí)是對(duì)稱(chēng)的,它們的噪聲帶來(lái)的干擾是具有破壞性的。然而,沒(méi)有CAN收發(fā)器是完全理想的,并且CANH和CANL信號(hào)之間的低值不對(duì)稱(chēng)會(huì)產(chǎn)生未經(jīng)完全均衡的差分信號(hào)。當(dāng)這一情況發(fā)生時(shí),CAN信號(hào)的共模分量(CANH和 CANL的平均值)將不再是一個(gè)恒定的DC值。相反地,它將表現(xiàn)出與數(shù)據(jù)有關(guān)的噪聲。
兩個(gè)主要的不均衡類(lèi)型會(huì)導(dǎo)致這個(gè)噪聲。其中一個(gè)就是顯性(被驅(qū)動(dòng))和隱性(高阻抗)狀態(tài)期間穩(wěn)定狀態(tài)共模電壓電平之間的不匹配。
這個(gè)穩(wěn)定狀態(tài)不匹配會(huì)導(dǎo)致一個(gè)類(lèi)似于CAN數(shù)據(jù)本身縮放版本的噪聲圖形。這個(gè)噪聲圖形在它的頻譜內(nèi)很寬,表現(xiàn)為一系列延伸至極低頻率且間隔均勻的離散頻譜線。定時(shí)不匹配會(huì)導(dǎo)致一個(gè)由短脈沖或干擾組成的噪聲圖形,只要數(shù)據(jù)中有邊緣變換,它就會(huì)出現(xiàn)。這個(gè)噪聲圖形的頻譜含量往往集中比較高的頻率上。
圖1中的波形顯示了一個(gè)可以在典型CAN收發(fā)器的輸出上觀察到的共模噪聲。在這幅圖像中,黑色軌跡線(通道1)顯示CANH,紫色軌跡線(通道 2)顯示的是CANL,并且綠色軌跡線(數(shù)據(jù)功能)是CANH與CANL的和。這個(gè)求和的過(guò)程給出了一個(gè)波形,它的值等于此時(shí)一個(gè)指定點(diǎn)上共模電壓的2 倍。
圖1:典型CAN收發(fā)器CANH/CANL輸出和共模噪聲
共模波形顯示出兩種噪聲類(lèi)型:與顯性至隱性/隱性至顯性變換相對(duì)應(yīng)的高頻噪聲,而低頻噪聲是與不匹配的顯性和隱性共模相對(duì)應(yīng)的。
由于信號(hào)的共模部分能夠與系統(tǒng)(或與外部系統(tǒng))中的其它分量耦合在一起(通過(guò)輻射或傳導(dǎo)路徑),這個(gè)共模噪聲直接影響放射性能。這個(gè)器件的傳導(dǎo)放射按照工業(yè)電氣工程/電子 (IBEE) 茨維考技術(shù)的工程服務(wù)進(jìn)行測(cè)量;如圖2中所示,這個(gè)器件的傳導(dǎo)放射連同一個(gè)普通汽車(chē)原始設(shè)備制造商(OEM)限值線一同繪制。
圖2:一個(gè)典型CAN收發(fā)器的傳導(dǎo)放射
這個(gè)收發(fā)器的輸出放射超過(guò)了低頻和高頻區(qū)域內(nèi)的OEM要求。為了把放射降低到令人滿(mǎn)意的水平,必須使用某些外部濾波。
CAN總線中最常用的濾波器組件就是共模扼流圈(如圖3中所示)。共模扼流圈的構(gòu)成方式是將兩個(gè)線圈繞在同一個(gè)鐵芯上。在每個(gè)線圈繞組方向的安排方面,要使得共模電流(也就是說(shuō),每個(gè)線圈內(nèi)的電流方向一致)具有共用同一極性的磁通量。這使得共模扼流圈可以運(yùn)行為針對(duì)共模信號(hào)的電感器,從而提供一個(gè)隨上升的頻率而增加的阻抗。相反地,差分模式電流(也就是說(shuō),每個(gè)線圈內(nèi)的電流方向相反)將使它們的磁通量與反向極性相互作用。對(duì)于諸如CAN信號(hào)的均衡波形,每個(gè)線圈內(nèi)相反磁通量的幅度將會(huì)相等,因此不會(huì)在鐵芯內(nèi)累積靜磁通。這使得扼流圈運(yùn)行為一個(gè)針對(duì)CAN信號(hào)的短接電路。
圖3:共模扼流圈電路原理圖
這項(xiàng)技術(shù)在減少CAN總線放射方面十分有效。例如,當(dāng)用一個(gè)51μH共模扼流圈對(duì)上面不能滿(mǎn)足放射要求的器件進(jìn)行重新測(cè)試時(shí),性能得到極大提升(圖4)。
圖4:典型CAN收發(fā)器(具有共模扼流圈)的傳導(dǎo)放射
然而,在添加共模扼流圈時(shí)會(huì)帶來(lái)一些缺點(diǎn)。使用共模扼流圈時(shí)的一個(gè)明顯劣勢(shì)就是印刷電路板上需要額外的空間,并且會(huì)產(chǎn)生多余的物料清單成本。不過(guò),除此之外,還應(yīng)該考慮某些對(duì)CAN總線的細(xì)微影響。由于扼流圈線圈會(huì)引入某些串聯(lián)電感,當(dāng)這個(gè)電感與CAN網(wǎng)絡(luò)的寄生電容組合在一起時(shí)會(huì)生成諧振。盡管在大多數(shù)頻帶內(nèi)減少了共模噪聲,這些諧振會(huì)在諧振頻率上導(dǎo)致噪聲數(shù)量增加。可以在圖5中所示的共模噪聲波形中觀察到這個(gè)影響。
圖5:由扼流圈電感導(dǎo)致的共模噪聲
這個(gè)窄帶噪聲特別難管理。它的幅度往往很強(qiáng),并且,由于扼流圈電感和總線電容的變化,其頻率也會(huì)隨著系統(tǒng)的不同而發(fā)生變化。需要注意的是,一個(gè)共模扼流圈的電感值通常在較寬的公差范圍內(nèi)指定(比如說(shuō)標(biāo)稱(chēng)值的-30%到50%)。相似地,一個(gè)CAN網(wǎng)絡(luò)的總線電容將根據(jù)所使用電纜連接的類(lèi)型和長(zhǎng)度、網(wǎng)絡(luò)中的節(jié)點(diǎn)數(shù)量和每個(gè)節(jié)點(diǎn)的設(shè)計(jì)而發(fā)生變化。共模扼流圈的另外一個(gè)意外結(jié)果就是總線上增高的大瞬態(tài)電壓風(fēng)險(xiǎn)。諸如到電源、電池電壓或系統(tǒng)接地的短接等故障情況會(huì)導(dǎo)致共模電流的突然變化。這會(huì)在短路連接/斷開(kāi),以及CAN驅(qū)動(dòng)在顯性和隱性狀態(tài)之間變換時(shí)出現(xiàn)。當(dāng)流經(jīng)扼流圈電感的電流快速變化時(shí),會(huì)在驅(qū)動(dòng)器IC的CAN端子上產(chǎn)生一個(gè)較大的電壓電位。在某些情況下,這個(gè)電壓有可能超過(guò)CAN器件的瞬態(tài)過(guò)壓處理能力,并且會(huì)導(dǎo)致永久損壞。
為了在避免與共模扼流圈有關(guān)的不利影響的同時(shí)減少放射,可使用一個(gè)替代解決方案:減少CAN驅(qū)動(dòng)器的共模噪聲輸出。這看起來(lái)似乎簡(jiǎn)單而又直接,但是這需要半導(dǎo)體廠商進(jìn)行仔細(xì)而又認(rèn)真的設(shè)計(jì)。隱性和顯性狀態(tài)期間的CANH和CANL電壓電平需要受到嚴(yán)格控制,以確保CAN總線波形盡可能地保持平衡。
此外,當(dāng)CANH和CANL線路在顯性和隱性狀態(tài)之間變換時(shí),它們之間的變換時(shí)間和定時(shí)偏移需要良好匹配,以限制出現(xiàn)在高頻頻帶內(nèi)的共模噪聲。
針對(duì)TI TCAN1042-Q1 CAN收發(fā)器的瞬態(tài)波形如圖6中所示。圖7中給出的是相應(yīng)的放射曲線圖。
圖6:CANH/CANL輸出和共模噪聲
圖7:一個(gè)汽車(chē)故障保護(hù)CAN收發(fā)器的傳導(dǎo)放射
TCAN1042-Q1的良好匹配輸出級(jí)使得輸出共模噪聲極低。這使得在不使用扼流圈等外部共模濾波組件的情況下,放射性能符合OEM的要求。
結(jié)論
雖然共模扼流圈作為一種緩解CAN總線EMC問(wèn)題的方法,目前廣泛應(yīng)用于汽車(chē)行業(yè),全新的高性能收發(fā)器正在使共模扼流圈變得可有可無(wú)。不使用共模扼流圈,可以在避免電路諧振和電感電壓尖峰等問(wèn)題的同時(shí),使CAN總線的實(shí)現(xiàn)方式變得更小、成本更低。
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過(guò)基本描述找到需要的電容?
技術(shù)文章更多>>
- 意法半導(dǎo)體公布2024年第四季度及全年財(cái)報(bào)和電話會(huì)議時(shí)間安排
- IGBT 模塊在頗具挑戰(zhàn)性的逆變器應(yīng)用中提供更高能效
- 看完CES看CITE 2025開(kāi)年巨獻(xiàn)“圳”聚創(chuàng)新
- 傳感器和轉(zhuǎn)換器的設(shè)計(jì)應(yīng)用
- 原來(lái)為硅MOSFET設(shè)計(jì)的DC-DC控制器能否用來(lái)驅(qū)動(dòng)GaNFET?
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
圖像傳感器
陀螺傳感器
萬(wàn)用表
萬(wàn)用表使用
網(wǎng)絡(luò)電容
微波
微波功率管
微波開(kāi)關(guān)
微波連接器
微波器件
微波三極管
微波振蕩器
微電機(jī)
微調(diào)電容
微動(dòng)開(kāi)關(guān)
微蜂窩
位置傳感器
溫度保險(xiǎn)絲
溫度傳感器
溫控開(kāi)關(guān)
溫控可控硅
聞泰
穩(wěn)壓電源
穩(wěn)壓二極管
穩(wěn)壓管
無(wú)焊端子
無(wú)線充電
無(wú)線監(jiān)控
無(wú)源濾波器
五金工具