如何在毫米波系統(tǒng)中“大顯身手”?與ADI一起“GaN
發(fā)布時(shí)間:2018-02-02 責(zé)任編輯:wenwei
【導(dǎo)讀】氮化鎵(GaN)功率半導(dǎo)體技術(shù)和模塊式設(shè)計(jì)的進(jìn)步,使得微波頻率的高功率連續(xù)波(CW)和脈沖放大器成為可能。通過減少器件的寄生元件,以及采用更短的柵極長(zhǎng)度和更高的工作電壓,GaN晶體管已實(shí)現(xiàn)更高的輸出功率密度、更寬的帶寬和更好的DC轉(zhuǎn)RF效率。
作為反射頻電子戰(zhàn)(CREW)應(yīng)用的首選技術(shù),GaN已有成千上萬的放大器交付實(shí)際使用?,F(xiàn)在,該技術(shù)也被部署到機(jī)載電子戰(zhàn)領(lǐng)域,開發(fā)中的放大器能夠在RF/微波范圍的多個(gè)倍頻程上提供數(shù)百瓦的輸出功率。
ADI的“比特轉(zhuǎn)RF”計(jì)劃將整合公司在基帶信號(hào)處理和GaN功率放大器(PA)技術(shù)方面的優(yōu)勢(shì)。通過使用預(yù)失真和包絡(luò)調(diào)制等技術(shù),這種整合將有利于提高PA線性度和效率。
RF功率放大器設(shè)計(jì)人員關(guān)注GaN器件,因?yàn)樗鼈冎С址浅8叩墓ぷ麟妷?比GaAs高三到五倍),并且每單位FET柵極寬度容許的電流大致是GaAs器件的兩倍。這些特性對(duì)PA設(shè)計(jì)人員有重要意義,意味著在給定輸出功率水平可以支持更高的負(fù)載阻抗。以前基于GaAs或LDMOS的設(shè)計(jì)的輸出阻抗常常極其低(相對(duì)于50 Ω或75 Ω的典型系統(tǒng)阻抗而言)。低器件阻抗會(huì)限制可實(shí)現(xiàn)的帶寬,也就是說,隨著放大器件與其負(fù)載之間的阻抗轉(zhuǎn)換比要求提高,元件數(shù)和插入損耗也會(huì)增加。由于這種高阻抗,此類器件的早期使用者在某些情況下僅將一個(gè)器件安裝在不匹配的測(cè)試夾具中,施加直流偏置,并用RF/微波測(cè)試信號(hào)驅(qū)動(dòng)該器件,便取得了部分成果。
由于這些工作特性及其異常高的可靠性,GaN器件也適用于高可靠性空間應(yīng)用。多家器件供應(yīng)商在225°C或更高的結(jié)溫下進(jìn)行了壽命測(cè)試,結(jié)果表明單個(gè)器件的平均失效前時(shí)間(MTTF)超過一百萬小時(shí)。如此高的可靠性主要是因?yàn)镚aN具有很高的帶隙值(GaN為3.4,GaAs為1.4),這使得它特別適合高可靠性應(yīng)用。
擴(kuò)大GaN在高功率應(yīng)用中的使用的主要障礙是其制造成本相對(duì)較高,通常比GaAs高出兩到三倍,比Si LDMOS器件高出五到七倍。這阻礙了它在無線基礎(chǔ)設(shè)施和消費(fèi)者手持設(shè)備等成本敏感型應(yīng)用中的使用。現(xiàn)在有了硅上氮化鎵工藝,雖然存在上面提到的性能問題,但這種工藝生產(chǎn)的器件可能最適合成本敏感型應(yīng)用。在不久的將來,隨著GaN器件制造轉(zhuǎn)向更大尺寸的晶圓(直徑150 mm及更大,目前有多家領(lǐng)先的GaN器件代工廠正在開發(fā)),成本有望降低50%左右。
目前部署的用于天氣預(yù)報(bào)和目標(biāo)捕獲/識(shí)別的雷達(dá)系統(tǒng),依賴于工作在C波段和X波段頻率的TWT功率放大器。此類放大器在高電源電壓(10 kV至100 kV)和高溫下運(yùn)行,容易因?yàn)闆_擊和振動(dòng)過大而受損。這些TWT放大器的現(xiàn)場(chǎng)可靠性通常只有1200到1500小時(shí),導(dǎo)致維護(hù)和備件成本很高。
作為高功率TWT放大器的替代產(chǎn)品,ADI基于GaN技術(shù)開發(fā)了一款8 kW固態(tài)X波段功率放大器。該設(shè)計(jì)采用創(chuàng)新的分層合并方法,將256個(gè)MMIC的RF/微波輸出功率加總,各MMIC產(chǎn)生大約35 W的輸出功率。當(dāng)個(gè)別MMIC發(fā)生故障時(shí),這種合并方法保證輸出性能不會(huì)急劇降低。TWT放大器則不是如此,由于其冗余性較低,單一故障往往會(huì)導(dǎo)致器件發(fā)生災(zāi)難性故障。對(duì)于這種固態(tài)GaN功率放大器,RF/微波合并架構(gòu)必須在MMIC間所需的隔離與整個(gè)網(wǎng)絡(luò)的RF/微波插入損耗之間取得合理的平衡。
8 kW放大器拓?fù)涫悄K式,包括4個(gè)2 kW放大器組件,其輸出功率利用波導(dǎo)結(jié)構(gòu)加以合并(圖1)。
圖1. 基于GaN的固態(tài)功率放大器能夠提供8 kW輸出功率,工作在X波段頻率
該放大器可以安裝在標(biāo)準(zhǔn)19英寸機(jī)殼中。該放大器的當(dāng)前設(shè)計(jì)(圖2)采用水冷,其他采用空冷的版本正在開發(fā)當(dāng)中。
圖2. 反映GaN、X波段固態(tài)功率放大器的結(jié)構(gòu)和器件的框圖
表1給出了水冷8 kW GaN PA的性能摘要。
表1. 8 kW PA典型性能
8 kW SSPA支持將多個(gè)模塊式SSPA合并以產(chǎn)生更高的功率水平。目前正在開發(fā)含有三個(gè)這樣的8 kW SSPA模塊的放大器,其在相同頻率范圍上可實(shí)現(xiàn)24 kW的峰值輸出功率水平。其他實(shí)現(xiàn)32 kW功率水平的配置也是可行的,目前正在考慮以供進(jìn)一步評(píng)估。
基于GaN的高級(jí)模塊
ADI當(dāng)前正在開發(fā)一種高級(jí)功率模塊,也是基于GaN技術(shù),其RF/微波輸出功率將是當(dāng)前模塊的兩倍。該模塊采用密封設(shè)計(jì),支持在極端環(huán)境下工作。結(jié)合下一代合并結(jié)構(gòu)和更低的插入損耗(與當(dāng)前方法相比),它將把RF/微波頻率的脈沖輸出功率提高到接近75 kW到100 kW的水平。這些先進(jìn)的高功率SSPA將包括控制和處理器功能,支持故障監(jiān)控、內(nèi)置測(cè)試(BIT)功能、遠(yuǎn)程診斷測(cè)試以及對(duì)MMIC器件(為放大器供電)的快速實(shí)時(shí)偏置控制電路進(jìn)行控制。
此類GaN固態(tài)功率放大器旨在解決業(yè)界對(duì)寬瞬時(shí)帶寬、高輸出功率放大器的需求。某些系統(tǒng)嘗試?yán)猛ǖ阑蚨鄠€(gè)放大器來滿足這些要求,每個(gè)放大器覆蓋所需頻譜的一部分并饋入一個(gè)多路復(fù)用器。這會(huì)提高成本和復(fù)雜性,并導(dǎo)致在多路復(fù)用器的頻率交越點(diǎn)處出現(xiàn)空隙。更有效的替代解決方案是以更高的功率水平連續(xù)覆蓋寬頻率范圍,這已經(jīng)通過兩個(gè)不同的GaN放大器得到實(shí)現(xiàn),其覆蓋VHF至L波段頻率以及2 GHz至18 GHz。
針對(duì)VHF到S波段頻率的放大器
針對(duì)VHF到S波段頻率,ADI開發(fā)了一款尺寸非常小、功能豐富、多倍頻程的放大器,其在115 MHz到2000 MHz范圍內(nèi)可提供50 W輸出功率。在全頻率范圍內(nèi),當(dāng)饋入0 dBm的標(biāo)稱輸入信號(hào)時(shí),該放大器可實(shí)現(xiàn)46 dBm (典型值40 W)的輸出功率水平。
該放大器采用尺寸為7.3" × 3.6" × 1.4"的緊湊式封裝,具有BIT功能,可提供熱和電流過載保護(hù)及遙測(cè)報(bào)告,并集成DC-DC轉(zhuǎn)換器以實(shí)現(xiàn)最佳RF性能,輸入電源范圍是26 VDC到30 VDC。圖3所示為該放大器的照片,輸出功率的典型實(shí)測(cè)性能數(shù)據(jù)與頻率的關(guān)系如圖4所示。
圖3. 連續(xù)波(CW)、50 W、固態(tài)功率放大器,工作頻率范圍為115 MHz至2000 MHz
圖4. 50 W、115 MHz至2000 MHz功率放大器的輸出功率與頻率的關(guān)系
針對(duì)2 GHz以上寬帶應(yīng)用的放大器
針對(duì)2 GHz以上的寬帶應(yīng)用,ADI也開發(fā)了一款GaN放大器,其可在2 GHz到18 GHz頻段產(chǎn)生50 W連續(xù)波(CW)輸出功率。這款放大器采用商用10 W GaN MMIC,其輸出功率貢獻(xiàn)通過寬帶低損耗合并電路加以合并。多個(gè)這樣的放大器也可以合并,以在同樣的2 GHz到18 GHz帶寬產(chǎn)生高達(dá)200 W的輸出功率。驅(qū)動(dòng)放大器鏈也是基于GaN有源器件。該放大器采用48 VDC供電,內(nèi)置穩(wěn)壓器和高速開關(guān)電路,支持脈沖操作,具有良好的脈沖保真度和快速上升/下降時(shí)間。表2列出的這款放大器的規(guī)格。
表2. 典型寬帶SSPA性能
圖5所示為該放大器的照片,圖6顯示了該放大器的輸出功率與頻率(2 GHz至18 GHz)的函數(shù)關(guān)系。
圖5. 50 W、CW輸出功率放大器,工作頻率范圍為2 GHz至18 GHz
圖6. 50 W、2 GHz至18 GHz功率放大器的輸出功率與頻率的關(guān)系
這款50 W放大器是2 GHz到18 GHz頻段系列放大器中的一員。ADI還開發(fā)了一款12 W輸出功率的緊湊型臺(tái)式放大器(圖7)和一款100 W輸出功率的機(jī)架安裝單元(圖8)。頻率范圍從2 GHz到6 GHz以及從6 GHz到18 GHz的其他放大器正在開發(fā)中。ADI還在努力將這些寬帶放大器的輸出功率從當(dāng)前水平提高到200 W及更高水平。為了實(shí)現(xiàn)更高的輸出功率水平,ADI正在開發(fā)高輸出功率模塊和寬帶RF功率合并器,其合并效率將大為改善,損耗也低于當(dāng)前功率合并器。
圖7. 寬帶2 GHz至18 GHz功率放大器,在全頻率范圍產(chǎn)生12 W CW輸出功率
圖8. 2 GHz至18 GHz固態(tài)功率放大器,在全頻率范圍產(chǎn)生100 W CW輸出功率
以上是利用GaN固態(tài)放大器可實(shí)現(xiàn)的性能水平的幾個(gè)例子。隨著更多GaN半導(dǎo)體供應(yīng)商轉(zhuǎn)向更大尺寸的晶圓,以及每片晶圓的良品率持續(xù)提高,將來此類放大器的單位成本有望降低。隨著柵極長(zhǎng)度的縮短,基于GaN的SSPA將能支持更高的工作頻率,因此會(huì)有越來越多的GaN器件用于工作在毫米波頻率的系統(tǒng)。顯而易見,當(dāng)前GaN改善性能并降低成本的趨勢(shì)應(yīng)當(dāng)會(huì)持續(xù)一段時(shí)間。
推薦閱讀:
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過基本描述找到需要的電容?
技術(shù)文章更多>>
- 充電器 IC 中的動(dòng)態(tài)電源路徑管理
- 了解負(fù)電壓的概念
- 單個(gè)IC也能構(gòu)建緊湊、高效的雙極性穩(wěn)壓器
- ESR 對(duì)陶瓷電容器選擇的影響(下)
- 基于射頻無線電力傳輸供電的無電池資產(chǎn)跟蹤模塊的先進(jìn)監(jiān)控系統(tǒng)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
圖像傳感器
陀螺傳感器
萬用表
萬用表使用
網(wǎng)絡(luò)電容
微波
微波功率管
微波開關(guān)
微波連接器
微波器件
微波三極管
微波振蕩器
微電機(jī)
微調(diào)電容
微動(dòng)開關(guān)
微蜂窩
位置傳感器
溫度保險(xiǎn)絲
溫度傳感器
溫控開關(guān)
溫控可控硅
聞泰
穩(wěn)壓電源
穩(wěn)壓二極管
穩(wěn)壓管
無焊端子
無線充電
無線監(jiān)控
無源濾波器
五金工具