中心論題:
- 混合電勢傳感器工作原理
- 混合電勢傳感器的應用和研究趨勢
解決方案:
- 具有不同催化作用的電極材料的固態混合電勢電化學傳感器在不同的電極上產生不同的平衡電勢
- 質量傳輸限制機理
- Butler-Volmer速度控制機理
前言
眾所周知,高溫下帶有Pt電極的YSZ電勢傳感器能夠在兩電極間產生Nernst電勢差,而當還原氣體與氧氣共存時,測量電勢會偏離平衡電勢。Fleming首先將混合電勢的概念用于解釋氧傳感器在CO存在的氣氛中所產生的不正常電勢,他認為偏離Nernstian行為是由于氧氣的陰極還原反應和還原性氣體的陽極氧化反應在電極上同時發生造成的,并將兩個反應達到平衡時所產生的電勢稱之為混合電勢。
將氧傳感器的工作電極置于還原性氣氛中產生這種非Nernstian行為開創了基于混合電勢原理的不同氣體的測量研究。早在20多年前,有人就開始研究用于測量CO、H2和CH化合物等還原性氣體濃度的混合電勢器件。Shimizu等人認為觀察到的非正常電勢來自于不同電極的催化活性的差異,他們在1978年開發了用于測量可燃燒氣體的帶有Pt、Pd電極的YSZ氧傳感器,但是其在高于500℃時的響應不大,而在低溫下響應不穩定并且選擇性很差。其中的原因是因為Pt電極是良好的氧化催化劑,使得還原性氣體在高溫下能夠在到達三相界面之前完全被氧化;而在低溫下,氣體的氧化則主要受到YSZ的低離子導電率的限制。為了解決這些問題,其他的金屬和金屬合金也被用于作為改進傳感器選擇性和靈敏度的取代材料的研究。V. Schule等人發現PtAu合金電極在高于550℃時對CO和H2具有更好的響應性能。
近年來,混合電勢傳感器的各種電極材料和電解質的開發研究十分活躍,多種器件原型已被制備出來,但是能實際應用的商業產品仍未出現,因為大多數器件沒有足夠的長期穩定性。想進一步改進這些傳感器的辦法是用具有更好的熱、化學穩定性的金屬氧化物取代貴金屬電極,這不僅能使傳感器的工作溫度更高,而且能夠擴大測量目標氣體的種類。
混合電勢傳感器受電極材料、電極形貌以及固態電解質類型的影響。許多基于Pt、Au電極和YSZ電解質的混合電勢傳感器在高于400℃的溫度下工作,但是Au電極在高溫下會迅速再結晶長大而失去催化活性,這使得傳感器在高溫工作時沒有長期穩定性。電極的長期熱、化學穩定性和大規模制備可重復的傳感器結構是混合電勢氣體傳感器的主要障礙,用耐高溫并具有良好活性的氧化物電極材料取代金屬電極為改進傳感器選擇性和長期穩定性提供了前景。
傳感器工作原理
典型的固態混合電勢型傳感器結構如圖1所示,傳感器由電極1固態電解質電極2構成。電極材料一般是Pt、Au等金屬以及WO3、LaFeO3和LaSrMnO3等鈣鈦礦型氧化物;而固體電解質主要是YSZ或者CeO2 等。兩電極置于由含氧氣和還原性氣體組成的被測混合氣體同一側,可以無需參比氣體。各電極的氧化還原反應速率的差異會產生不同的混合電勢,混合電勢器件的響應就是兩電極間混合電勢差。
當多個電化學反應在電極上發生時,平衡電勢就是混合電勢,它來自于電極上各個反應的競爭。采用具有不同催化作用的電極材料的固態混合電勢電化學傳感器在不同的電極上產生不同的平衡電勢。對于低濃度的分析氣體,可能的控制過程有質量傳輸過程和電荷傳輸過程,而分壓比較高的氧氣的控制過程主要是電荷傳輸過程,這些過程就決定了混合電勢傳感器的各種響應模式。
以CO傳感器為例,它由沉積于氧離子固體電解質表面的兩電極組成。傳感器置于簡單混合氣體(如空氣和ppm級低濃度的CO的混合氣體)之中,氧氣會發生還原反應:
因氧氣分壓較大,一般由電荷傳輸過程控制,根據Butler-Volmer方程得到反應速率為:
式中,式中,T—開爾文溫度。R—理想氣體常數;F—法拉第常數; a—氧氣還原反應的電荷傳遞系數; —氧氣還原反應的電流密度; —氧氣的交換電流密度; —氧氣的平衡電勢;E —混合電勢;而對應的低濃度CO發生氧化反應:
CO+O2- →CO2+2e- (3)
這一反應可能由低濃度CO通過電極的質量傳輸過程即擴散極限控制,也可能為CO發生電化學過程中的電荷傳輸控制。當這些傳感器在測量氣體濃度遠低于氧氣濃度時,被測氣體的擴散成為整個電極反應控制的速度控制步驟,也就是質量傳輸限制機理。
式中,iCO為CO氧化反應的電流密度 CCO為CO的體積濃度;DCO為CO的擴散系數 擴散邊界層厚度。A電極的擴散面積; 如果是電荷傳輸控制,則根據Butler-Volmer速度控制機理有:
式中, 為CO的平衡電勢 , 為CO的交換電流密度;a為CO氧化反應的電荷傳遞系數。——— 在平衡條件下,上述兩反應的電流密度相等,所以有
同時,因交換電流密度正比于電極表面的活性區域比q,即: 對于Freundlich等溫吸附:
式中,x0小于1的常數。—大于因此可以得到上述電化學反應的交換電流密度為:
式中,m,n—常數。在兩電化學反應均為電荷傳輸過程控制,且過電位較大時,等式(2)和(5)可以簡化為Tafel方程,即:
聯立等式(6)、(9)、(10)、(11)和(12)得到平衡混合電勢為:
式中, 當環境中氧分壓為常數時,為CO的濃度的對數呈線性關系,即:就與 式中,E0、b—常數。一些帶有參比電極的混合電勢器件測量電池電勢接近于平衡氧電勢。這意味著還原性氣體的氧化反應出現在高過電位,而氧氣的還原反應出現在低過電位。如果為CO的氧化反應在高的過電位下發生,那么O2的還原反應的動力學可能遵循線性關系,等式(2)在低過電位時近似為:接近平衡氧電勢,氧氣的還原反應在低過電位下發生,而
聯立等式(6)、(9)、(10) 、(12)和(15)得平衡混合電勢為:
因為Emix0,因此上式可以近似為:接近平衡氧電勢,所以Emix- 接近于
在COCO濃度對數呈線性關系。2一定的條件下,Emix也與如果在氧氣的電化學反應為電荷傳輸過程控制,且過電位較大,而CO的氧化反應由擴散極限控制,那么聯立等式(4)、(6)、(9)和(11),得到平衡混合電勢為:
在常氧濃度條件下仍然得到了EmixCO的濃度的對數呈線性關系。與 Elisabetta Di Bartolomeo 等人制備了PtYSZPtWO3電池,并且觀察到其混合電勢與NO2,CO氣體濃度的對數呈線性曲線的響應行為,如圖2所示。如果EmixCO的氧化反應由擴散極限控制,那么聯立擴散質量傳輸限制方程(4)、線性氧還原等式(15)、(6)和(9)得到平衡混合電勢為:接近平衡氧電勢,同時氧氣的還原反應在低過電位下發生,而
此式給出了CO濃度和混合電勢的線性關系。
此外,Fernando Garzon等人還觀察到了電池PtCe0.8Gd0.2O1.9Au的混合電勢與各種還原性氣體濃度的線性關系,如圖3所示。
混合電勢傳感器的應用和研究趨勢
由研究氧傳感器非Nernstian現象而產生的混合電勢傳感器主要有三方面的應用:在鍋爐氣氛控制和汽車尾氣排放控制系統的應用,這是為了滿足全球環境保護的要求。汽車尾氣中各種有害成分通常高達幾百ppm,因此傳感器被應用于這些燃燒過程的監測控制;在煤礦和天然氣開采等危險環境中對易燃易爆氣體進行監測。采礦特別是煤礦和天然氣開采環境中含有大量可燃氣體,具有爆炸性的危險,所以必須用傳感器來檢測這些危險氣體成分,保證采礦生產安全正常運行;用于各種戶外環境氣體或者家居有害氣體的檢測。當前環境保護法規越來越嚴格,人類也越來越關心戶內戶外的環境氣體對人體的影響,也就需要傳感器來檢測各類環境氣體的變化。正是這些應用需求為混合電勢傳感器提供巨大的市場。
混合電勢理論是具有優良性能的混合電勢傳感器的基礎,也是制備下一代各種氣體傳感器的基礎。混合電勢傳感器能夠快速原位在線直接測量各種環境氣體,并且應用市場廣闊,但這些傳感器也有一些限制因素,而改善這些限制因素的研究正是這一領域的發展方向:
a.尋找新的混合電勢傳感器的電極材料來提高傳感器的靈敏性、信號重復性、長期穩定性、對不同氣體的選擇性和擴大檢測氣體的種類等實用化研究。
b.通過研究電極材料和電解質材料來擴大傳感器的工作溫度范圍。一方面,在較低的溫度下,傳感器能夠準確有效的輸出信號;另一方面,在高溫下,傳感器要具備一定的抗高溫老化和抗中毒性能。
c.要降低混合電勢傳感器的生產成本,必須進行大規模生產,而生產的高效率則必須依賴于傳感器制備工藝的自動化。利用微制備技術和流延、絲網印刷等多層平板技術提高生產能力達到可接受的總生產效率。
d.混合電勢傳感器通常帶有復雜的電子電路。如果沒有精確控制的電子電路,傳感器的反饋控制功能也無法實現。
因此有必要將包括傳感器、電子電路、軟件等各部分作為一個整體模塊進行研究,來提高整個混合電勢傳感器的可靠性和實用性。
結束語
以混合電勢響應為基礎的固態高溫氣體傳感器為各種還原性氣體提供了一種簡單快速并且低成本的原位在線測量。這些傳感器響應機理因電極材料、電極微觀形貌等不同而有所變化,主要分為混合電勢與被測氣體濃度呈對數關系或者線性關系兩種類型。其響應行為取決于電極反應的Butler-Volmer動力學方程的具體形式和氣體擴散的質量傳輸限制。電化學動力學和不同催化電極性能是描述這一傳感器響應性能的必要條件。本文通過對四種可能傳感控制原理的比較表明了可以研制出具有穩定輸出、選擇性好、靈敏度高的混合電勢傳感器,這類傳感器將具有巨大的研究價值和市場前景。