中文在线中文资源,色鲁97精品国产亚洲AV高,亚洲欧美日韩在线一区,国产精品福利午夜在线观看

你的位置:首頁 > 傳感技術 > 正文

利用MEMS技術研究非制冷紅外探測器

發布時間:2013-03-11 責任編輯:shyhuang

【導讀】本文綜述了MEMS技術的工藝及主要特點,詳細介紹了其有代表性的非制冷紅外探測器的具體應用及工藝結構的制作。

 

HEHS技術簡介

MEMS技術是在微電子制造工藝基礎上吸收融合其它加工工藝技術逐漸發展起來的。它是實現微型傳感器、微型執行器、微能源及電子線路集成為一體的新興特殊微加工技術r3), 由較小的0.5~500gm的可動子元件構成的器件系統。60年代初開發出了MEMS的重要技術一一晶體各向異性腐蝕和陽極鍵合技術;80年代末開發出LIGA技術,并取得初步成果,研制出了齒輪、曲柄、彈簧和微型電極以及更為復雜的MEMS;90年代,MEMS技術已經進入實際應用,如汽車防撞氣囊用的加速度傳感器,成本僅為5美元左右。

通常,MEMS技術可分為體微機械加工(腐蝕、鍍膜、摻雜、鍵合)、表面微加工、高深寬比微加工及超微精密加工等,同時還借助了一些成熟的半導體工藝,如光刻、氧化、擴散、離子注入、濺射、外延生長和淀積等技術。目前加工材料以硅基為主,同時對金屬、玻璃、陶瓷、塑料和Ⅲ,V族化合物等材料的研究也逐漸增多。
微電子技術是MEMS技術的重要基礎,其加工手段是MEMS技術重要加工手段之一。MEMS也有它自己的特點,如工藝多樣化,能制作梁、隔膜、凹槽、孔、密封洞、錐、針尖、彈簧及所構成的復雜機械結構,同時它能與微電子工藝兼容,器件實現批量生產,成本降低。MEMS技術幾乎可應用到各個領域,尤其是要求小尺寸、高精度、高可靠性及低功耗的高科技領域。

 

 
圖1:MEMS產業

MEMS技術在非制冷紅外探測器中的應用

近年來,MEMS技術得到了迅速發展,將其應用于非制冷紅外探測器有了比較成功的例子,為現有單元器件小型化和高密度陣列集成開辟了一條新的途徑。

微機械紅外熱電堆探測器

紅外熱電堆探測器的工作原理為塞貝克效應(Seebeckeffect)。早先的紅外熱電堆探測器是利用掩膜真空鍍膜的方法,將熱電偶材料沉積到塑料或陶瓷襯底上獲得的,但器件的尺寸較大,且不易批量生產。隨著MEMS技術的應用,出現了微機械紅外熱電堆探測器。K.D.Wise等人,最先利用MEMS技術于20世紀80年代初制造獲得了硅基紅外熱電堆探測器。

器件制作一般采用體硅,從硅片背面利用硅的各向異性腐蝕而得到呈金字塔型的腐蝕孔,側壁為慢腐蝕面?,F在主要通過薄膜結構來實現熱結區與冷結區的隔熱結構。應用的薄膜結構有兩類,即封閉膜結構和懸梁結構,其中封閉膜是指熱堆的支撐膜為整層的復合介質膜,一般為氮化硅膜或氮化硅與氧化硅復合膜。懸梁則是指周圍為氣氛介質所包圍,一端固支、一端懸空的膜結構。從隔熱效果來說,懸梁比封閉膜更具優勢,因為在封閉膜結構中熱可以沿著介質支撐膜傳播,而并不完全沿著熱偶對傳播,使熱耗散較大,熱電轉換效率低,靈敏度小。但從工藝制造過程以及成品率角度來說,封閉膜更具優勢,因為這種膜結構的優點在于結構穩定,由于膜與基體處處相連,因此受應力影響小,制造過程中膜本身不易破裂,成品率高,易制造而懸梁與基體間只通過固支一端相連,另一端懸空,因此受應力的影響顯著,制造過程中膜容易發生翹曲或破裂,故成品率較低,不易制造。

現在許多研究團體正致力于微機械紅外熱電堆陣列的研究,而硅基熱電堆是其中的研究熱點,如多晶硅/金熱偶線陣列、硅/鋁熱偶線陣列、n型多晶硅/p型多晶硅熱偶面陣列。與一般的紅外探測器相比,微機械紅外熱堆探測器的優點在于:①具有較高的靈敏度,寬松的工作環境與非常寬的頻譜響應:②與標準IC工藝兼容,成本低廉且適合批量生產。

熱釋電非制冷紅外探測器

熱釋電探測器的工作原理為熱電晶體的熱釋電效應。由于熱釋電探測器的性能隨著熱量的下降而降低,所以良好的熱絕緣結構是制作高性能熱釋電探測器的關鍵。最早采用的絕緣技術,是把熱釋電紅外探測器或陣列通過可塑性金屬(如In)臺面與Si信號處理電路對接,但In的熱絕緣性能很差,不利于制作高性能的大面積集成熱釋電紅外焦平面陣列。現在多采用MEMS技術制作橋式結構或者懸浮的膜式結構來改善感應單元的熱鄉這樣當紅外光照射時,每個感應單元可以獲得一個相對大的溫度升高值,相應地提高了探測器的靈敏度。是一種采用懸浮的膜式結構的微機械熱釋電紅外探測器感應單元截面圖。

[page]
現在用于非致冷紅外焦平面的鐵電材料主要有BST,PZT和PST三種。下面是一種BST薄膜紅外探測器膜式絕緣結構的制作方法。先用Pt/Ti/pSi/n-Si作襯底,采用溶膠-凝膠法沉積BST薄膜,然后利用光刻和離子束刻蝕技術,將BST薄膜與pt底電極刻成列陣圖案,接著采用光刻和離子束濺射技術,在每個BST薄膜探測單元上面濺射Pt薄膜作為上電極,再使用雙面光刻技術,與正面探測單元相對應,在基片的背面套刻彼此互不相連的面單元圖案,使用EDP腐蝕去探測單元背面的Si襯底,使得每個探測單元懸空,形成膜式絕緣結構。

 
圖2:非制冷紅外探測器

MEMS技術制作橋式結構或者懸浮的膜式結構有兩個關鍵問題需要解決:一是找到沉積高質量鐵電材料薄膜的技術,該技術必須與Si-CMOS電路的工藝溫度和刻蝕技術相兼容;二是沉積膜與硅基底之間必須有高的熱絕緣。

T.Evans等人利用硅膠做沉積膜與硅基底之間的熱絕緣層,較好地解決了沉積膜與硅基底之間的熱絕緣問題。當硅膠的孔隙率為75%~95%時,有著比空氣更低的熱導率,而且該方法與標準IC工藝完全兼容(這種技術在鐵電存儲器制作中已得到成熟運用),用這種技術做出的陣列是低成本非制冷紅外探測器制作的又一選擇。

 
圖3:非制冷紅外探測器光學原理

微測輻射熱計

微測輻射熱計是利用物體體電阻對溫度的敏感性制成的。為了盡可能的增加器件的熱絕緣性,減小熱導以提高器件的靈敏度,現在大多采用MEMS技術實現懸浮微橋結構來解決這一問題。它采用兩臂支撐的微橋實現熱絕緣,Si,N,作為支撐薄膜,微橋下方的硅襯底被掏空,微橋橋面上制作多晶鍺硅Poly-Si07Ge03,薄膜電阻作熱敏探測源,為提高對紅外的吸收,表面有Sio/SiN復合膜作紅外吸收層。

和微機械熱釋電探測器相比較而言,在性能和低成本等方面,微測輻射熱計占有優勢,走單片式橋狀熱絕緣探測器結構的途徑,測輻射熱計也比熱釋電探測器早走了十多年。目前微測輻射熱計陣列大小已達640X 480,像素尺寸可以做到25um×25um,性能已達到非制冷光子探測器的水平。

 
圖4:信號處理組成框圖

DenizSabuncuoglutezcan等人最新報道用一種完全與IC技術兼容的MEMS~藝做出了一種新的微測輻射熱計。它利用硅的各向異性腐蝕把CMOS結構的n阱掏空而形成懸吊結構(利用TMAH溶液的電化學腐蝕停技術)。用這種方法做成的微測輻射熱計, 當象素單元為74LLmX 74~tm時,直流響應率達到9250V/W,探測率可達2 X 109cmHzla/W,而且由于這種方法在完成CMOS結構后不再需要任何光刻或者紅外敏感材料的沉積,使得探測器的成本就大大降低,幾乎可以做到與CMOS芯片的成本等價,因此這種方法具有非常大的發展前途。

相比較以上三類探測器,熱電堆探測器的性能處于劣勢,研究也相對較少,而對測輻射熱探測器和熱釋電探測器而言,在性能和低成本方面相對較好。但正是由于MEMS技術和IC工藝的應用,才使得探測器整體性能不斷提高、成本不斷降低。

其它非制冷紅外探測器

由于MEMS技術的獨特優勢,使得探測器陣列元件集成度更高,性能更好,有越來越多的研究團體利用MEMS技術研制出了其它種類的非制冷紅外探測器。是一種利用真空勢壘中存在的電子隧穿效應而制成的微機械電子隧道紅外探測器這種探測器采用三層硅結構:第一層硅結構制作隧道硅尖電極和靜電偏轉電極;第二層硅結構制作彈性敏感薄膜和一半氣腔:第三層硅結構制作紅外透射膜和另一半氣腔。這種探測器的靈敏度比較高,電子隧穿位移傳感器部分的分辨率可達10-4nm/Hzl/2。

MEMS技術作為一種新興交叉學科的產物,在非制冷紅外探測器的發展中起到了突破性的作用,隨著各種MEMS新技術越來越多地融入,非制冷紅外探測器的發展也必定會越來越有生機。
 

要采購薄膜么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

  • <center id="09kry"></center>

  • 主站蜘蛛池模板: 密山市| 石首市| 唐山市| 巴南区| 内丘县| 景泰县| 娄烦县| 青浦区| 革吉县| 昌宁县| 弥勒县| 凤凰县| 德州市| 五河县| 娄烦县| 鹤庆县| 延津县| 会宁县| 淅川县| 连南| 怀远县| 且末县| 抚顺县| 沂水县| 呈贡县| 灵宝市| 大方县| 香港| 安福县| 云南省| 吉隆县| 礼泉县| 双桥区| 东宁县| 隆子县| 永清县| 邹平县| 永州市| 岗巴县| 永善县| 晴隆县|