中文在线中文资源,色鲁97精品国产亚洲AV高,亚洲欧美日韩在线一区,国产精品福利午夜在线观看

你的位置:首頁 > 傳感技術 > 正文

自動駕駛汽車的未來趨勢:集中式傳感器融合

發布時間:2022-09-19 來源:安霸 責任編輯:wenwei

【導讀】現如今,大多數自動駕駛汽車都依靠傳感器融合,即將毫米波雷達、激光雷達和攝像頭的多傳感器數據以一定的準則進行分析和綜合來收集環境信息。正如自動駕駛汽車行業巨頭們所證明的那樣,多傳感器融合提高了自動駕駛汽車系統的性能,讓車輛出行更安全。


但并非所有的傳感器融合都會產生相同的效果。雖然許多自動駕駛汽車制造商依靠 "目標級"的傳感器融合,但只有集中式傳感器前融合才能為自動駕駛系統提供最佳駕駛決策所需的信息。接下來我們將進一步解釋目標級融合和集中式傳感器前融合之間的區別,以及解釋證明集中式前融合不可或缺的原因。


集中式傳感器前融合保留了原始傳感器數據可做出更精確的決策


自動駕駛系統通常依靠一套專門的傳感器來收集關于其環境的底層原始數據。每種類型的傳感器都有優勢和劣勢,如圖所示:


1661834326313440.png


融合了毫米波雷達、激光雷達和攝像頭多傳感器后可最大限度地提升所收集數據的質量和數量,從而生成完整的環境圖像。


多傳感器融合,相對于傳感器單獨處理的優勢已經被自動駕駛汽車制造商普遍接受,但這種融合的方式通常發生在 “目標級”的后處理階段。在這種模式下,物體數據的收集、處理、融合和分類都發生在傳感器層面。然而,數據綜合處理前,單個傳感器通過對信息的預先分別過濾,使得對自動駕駛決策所需的背景信息也幾乎都被剔除了,這使得目標級融合很難滿足未來的自動駕駛算法的需要。


集中式傳感器前融合則很好地規避了此類風險。毫米波雷達、激光雷達和攝像頭傳感器將底層原始數據發送到車輛中央域控制器進行處理。這種方法最大限度地提高了自動駕駛系統獲取的信息量,使得算法能夠獲取全部的有價值的信息,從而能夠實現比目標級融合提供更好的決策。


AI增強型毫米波雷達通過集中化處理大幅提升自動駕駛系統的性能


2.jpg



如今,自動駕駛系統已經集中式處理攝像頭數據。但當涉及到毫米波雷達數據時,集中化處理仍然是不現實的。高性能的毫米波雷達通常需要數百個天線通道,這就大幅增加了產生的數據量。因此,本地處理就成了一個更具性價比的選擇。


然而,安霸的 AI 增強的毫米波雷達感知算法在不需要額外物理天線的情況下,可以提高雷達角分辨率和性能。來自較少信道的原始雷達數據可以通過使用標準汽車以太網等接口,以較低的成本傳送到中央處理器。當自動駕駛系統將原始的 AI 增強雷達數據與原始攝像頭數據相融合時,它們就能充分利用這兩種互補的傳感方式來建立一個完整的環境圖像,使融合后的結果更加全面,超越任何單一傳感器所獲得的信息。


毫米波雷達的更新迭代有助于降低成本,也大幅地提高自動駕駛系統的性能。傳統的低成本雷達量產時,每個毫米波雷達的價格可以低于 50 美元,比激光雷達的目標成本低一個數量級。與無處不在的低成本攝像頭傳感器相結合,AI 雷達提供了可接受的精確度,這對大規模商業化的自動駕駛汽車量產至關重要。而激光雷達傳感器與運行 AI 算法的攝像頭/毫米波雷達感知融合系統相重疊,如果激光雷達的成本逐漸下降,將可作為攝像頭 + 毫米波雷達在 L4/L5 自動駕駛系統中的安全冗余。


算法優先的中央處理架構深化傳感器融合以優化自動駕駛系統性能


現行的目標級傳感器融合有一定局限性。這是因為前端傳感器都帶有本地處理器,從而限制了每個智能傳感器的尺寸、功耗和資源分布,從而進一步限制了整個自動駕駛系統的性能。此外,大量數據處理會快速耗盡車輛的動力并縮短其行駛里程。


相反,算法優先的中央處理架構實現了我們稱之為深度、集中式的傳感器前融合。該技術利用最先進的半導體工藝節點優化了自動駕駛系統的性能,這主要是因為該技術在所有傳感器上動態分布的處理能力,以及能根據駕駛場景提升不同傳感器和數據動向的性能。通過獲取高質量、底層原始數據,中央處理器可以做出更智能、更準確的駕駛決策。


自動駕駛汽車制造商可以使用低功耗毫米波雷達和攝像頭傳感器,并結合尖端的算法優先的特定應用處理器,如安霸最近宣布的 5 納米制程 CV3 AI 大算力域控制芯片,具備最佳感知和路徑規劃性能、具有最高的能效比,顯著增加每輛自動駕駛汽車行駛里程的同時,降低電池消耗。


不要拋棄傳感器——投資于它們的融合


自動駕駛系統需要多樣化的數據才能做出正確的駕駛決策,只有深度、集中式的傳感器融合才能提供最佳自動駕駛系統的性能和安全所需的廣泛數據。在我們的理想模型中…


1.低功耗、AI 增強的毫米波雷達和攝像頭傳感器在本地與自動駕駛汽車外圍的嵌入式處理器相連。

2.嵌入式處理器將原始檢測級對象數據發送到中央域SoC。

3.使用 AI、中央域處理器分析組合的數據以識別物體,做出駕駛決策。


集中式傳感器前融合可以改進現有的高層級融合架構,讓使用傳感器融合的自動駕駛汽車強大而可靠。為了獲得這些好處,自動駕駛汽車制造商必須投資算法優先的中央處理器,以及支持 AI 的毫米波雷達和攝像頭傳感器。通過多方努力,AI 制造商可以迎來下一階段的自動駕駛汽車發展的技術變革。


作者:前歐寶和德國大陸集團CEO,Karl-Thomas Neumann,

以及安霸雷達技術副總裁兼總經理Steven Hong



免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


推薦閱讀:


揭秘SMD保險絲:尺寸雖然小,功能不打折,它們是如何做到的?

電源噪聲對高速DAC相位噪聲影響有多大?如何消除它?

整流電容濾波負載原理——看似簡單的整流電路詳解(四)

讓數字預失真的故障排除和微調不再難 必備攻略請查收

GaN HEMT 大信號模型

特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

  • <center id="09kry"></center>

  • 主站蜘蛛池模板: 定远县| 巨鹿县| 攀枝花市| 奎屯市| 嘉黎县| 城固县| 开原市| 丽江市| 疏附县| 基隆市| 石屏县| 安龙县| 胶州市| 洞头县| 吉林市| 资阳市| 芮城县| 盈江县| 库伦旗| 郧西县| 平果县| 金山区| 沙坪坝区| 天祝| 桐乡市| 广德县| 涡阳县| 东海县| 德化县| 右玉县| 宁晋县| 五指山市| 沈丘县| 玉环县| 新乐市| 祁东县| 黔南| 九龙城区| 永济市| 辽源市| 常熟市|