【導讀】電路中逆變電源起到將直流電轉化成交流電的作用,而在電流轉化的過程中,控制算法是關鍵。對于剛接觸到逆變電源和控制算法的新手,本文就能幫助您快速理解逆變電源中的控制算法。
數字PID控制
PID控制由于算法簡單且易于整定,在之前的幾十年當中都得道了非常廣泛的應用。設計過程中不過分依賴系統參數,魯棒性好,可靠性高,是目前應用最廣泛、最成熟的一種控制技術。它在模擬控制正弦波逆變電源系統中已經得到了廣泛的應用。將其數字化以后,它克服了模擬PID控制器的許多不足和缺點,可以方便調整PID參數,具有很大的靈活性和適應性。與其它控制方法相比,數字PID具有以下優點:
PID控制并不過分依賴系統參數,系統參數的變化對控制效果影響很小,控制的適應性好,具有較強的魯棒性。在動態控制當中,過去、現在、將來這三個要素都涵蓋在PID算法中。控制過程快速、準確、平穩,具有良好的控制效果。PID控制在設計過程中不PID算法簡單明了,便于單片機或DSP實現。
采用數字PID控制算法的局限性有兩個方面。一方面是系統的采樣量化誤差降低了算法的控制精度。另一方面,采樣和計算延時使得被控系統成為一個具有純時間滯后的系統,造成PID控制器穩定域減少,增加了設計難度。
狀態反饋控制
狀態反饋控制可以任意配置閉環控制系統的極點,實現了逆變電源控制系統極點的優化配置,有利于改善系統輸出的動態品質,具有良好的瞬態響應和較低的諧波畸變率。但在建立逆變器的狀態模型時將負載的動態特性考慮在內,因此狀態反饋控制只能針對空載和已知的負載進行建模。由于狀態反饋控制對系統模型參數的依賴性很強,使得系統的參數在發生變化時易導致穩態誤差的出現和以及動態特性的改變。例如對于非線性的整流負載,其控制效果就不是很理想。
重復控制
重復控制是近幾年發展起來的一種新型逆變電源控制方案,它可以克服整流型非線性負載引起的輸出波形周期性的畸變。重復控制的思想是假定前一周期出現的基波波形畸變將在下一個周期的同一時間重復出現,控制器根據給定信號和反饋信號的誤差來確定所需的校正信號,然后在下一個基波周期的同一時間將此信號疊加到原控制信號上,以消除后面各個周期將出現的重復性畸變。該控制方法具有良好的穩態輸出特性和非常好的魯棒性,但該方法在控制上具有一個周期的延遲,因而系統的動態響應較差。自適應重復控制方案,已經成功地應用于逆變器的控制中。
滑模變結構控制
滑模變結構控制利用不連續的開關控制方法來強迫系統的狀態變量沿著相平面中某一滑動模態軌跡運動。該控制方法最大的優點是對參數變化和外部干擾的不敏感性,即強魯棒性,加上其開關特性,特別適用于電力電子系統的閉環控制。但滑模變結構控制存在系統穩態效果不佳、理想滑模切換面難于選取、控制效果受采樣率的影響等弱點。如今,逆變電源的滑模變結構控制的研究方興未艾,特別滑模變控制和其它智能控制策略相結合所構成的符合控制策略的研究倍受關注。
無差拍控制
無差拍控制是一種基于微機實現的PWM方案,它根據逆變電源系統的狀態方程和輸出反饋信號來計算逆變器的下一個采樣周期的脈沖寬度,80年代末引如到正弦波逆變電源控制系統中。對于線性系統來說,該控制方法具有很好的穩態特性和快速的動態響應。其缺點也十分明顯:它對系統參數的變化反應靈敏,即魯棒性較差。一旦系統參數出現較大波動或系統模型建立不準確時,系統將出現很強的震蕩。為此,在無差拍控制之中引入智能控制是當今的研究熱點之一。
智能控制
智能控制的分類較廣,很多分類都包含在內,對于高性能的逆變電源系統,模糊控制器有著以下優點:
如果想要達到接近非線性函數的結果,模糊控制將是首選。但模糊控制的分檔和模糊規則樹都受到一定的限制,隸屬函數的確定帶有一定的人為因素,因此模糊控制的精度有待與進一步提高。
查找模糊控制表占用處理器的時間很少,因而可以采用較高采樣率來補償模糊規則的偏差。
具有較強的魯棒性和自適應性,模糊控制器的設計不需要被控對象的精確數學模型。
本篇文章通過詳細的分類,對逆變電源中的控制算法分類進行了著重的剖析,此外還對每種控制方法的優點進行了介紹,方便各位新手根據需要有重點的進行了選擇,希望大家在閱讀過本篇文章之后能對逆變電源中控制算法有進一步的理解。
相關閱讀:
基礎知識:全面講解PID控制器的從始至終
基于PID的單相逆變器復合控制方案設計
解析處理高頻逆變電源的內外干擾問題