-
通信電源知識超級匯總!!!
通信電源是整個通信系統的重要組成部分,就像人體的心臟一樣,電源設備供電質量及供電可靠性,將直接影響整個通信系統及其質量。
2020-02-10
通信電源 知識匯總
-
帶精密電源基準電平轉換的高性能差分放大器
采用小尺寸工藝設計的高性能ADC通常采用1.8V至5V單電源供電。為了處理±10 V或更大的信號,ADC一般前置一個放大器電路以衰減該信號,防止輸入端飽和。在信號包含大共模電壓時普遍采用差分放大器(diff amp)。
2020-02-07
精密電源 基準電平 差分放大器
-
準諧振反激,變壓器該如何設計?
準諧振反激式變換器(Flyback Converter)由于能夠實現零電壓開通,減少了開關損耗,降低了EMI噪聲,因此越來越受到電源設計者的關注。但是由于它是工作在變頻模式,因此導致諸多設計參數的不確定性。如何確定它的工作參數,成為設計這種變換器的關鍵,本文給出了一種較為實用的確定方法。
2020-02-07
準諧振反激 變壓器 電路設計
-
四通道16位電壓 / 電流輸出DAC節省多通道PLC的空間、成本和功耗
可編程邏輯控制器 (PLCs)使用邏輯、時序控制、定時、計數和算術算法等快速、確定性的功能來控制機器和過程。PLC使用模擬和數字信號與終端節點通信,例如讀取傳感器和控制執行器。典型的通信方法包括電流/電壓環路、Fieldbus1和工業以太網2協議。
2020-02-06
DAC PLC 功耗
-
利用同步反相SEPIC拓撲結構實現高效率降壓/升壓轉換器
許多市場對高效率同相 DC-DC 轉換器的需求都在不斷增長,這些轉換器能以降壓或升壓模式工作,即可以將輸入電壓降低或提高至所需的穩定電壓,并且具有最低的成本和最少的元件數量。反相 SEPIC(單端初級電感轉換器)也稱為 Zeta 轉換器,具有許多支持此功能的特性(圖 1)。對其工作原理及利用雙通道...
2020-02-04
SEPIC 拓撲結構 降壓/升壓轉換器
-
大功率全集成同步Boost升壓變換器,可優化便攜式設備和電池供電應用
眾所周知,鋰離子電池能量密度高、重量輕、無記憶效應、自放電小,在便攜式應用領域中備受青睞。但是,由于大多數鋰離子電池的電壓范圍在 4.2V (完全充電) 至 3.0V (完全放電)之間,而后級電路的輸入電壓會高達 12V 或更高,因此在便攜式應用中需要采用升壓拓撲集成電路。市面上的便攜式應用(例如...
2020-02-04
Boost 升壓變換器 便攜式設備 電池供電
-
電路如何把電壓一步步頂上去的?
+5V_ALWP電壓通過D32的1腳對C710、C722、C715、C719開始充電,充電完畢后電路狀態如上圖顯示(二極管壓降忽略不計)。
2020-02-04
電路 電壓 充電
-
開關電源設計必須注意的這64個細節
以下為大家詳細介紹開關電源設計中,需要特別注意的64個細節。變壓器圖紙、PCB、原理圖這三者的變壓器飛線位號需一致。這是很多工程師在申請安規認證提交資料時會犯的一個毛病。
2020-02-03
開關電源
-
開關電源Buck電路CCM與DCM工作模式有什么區別?
CCM(Continuous Conduction Mode),連續導通模式:在一個開關周期內,電感電流從不會到0。或者說電感從不“復位”,意味著在開關周期內電感磁通從不回到0,功率管閉合時,線圈中還有電流流過。
2020-01-22
開關電源 Buck電路 CCM DCM 工作模式
- 智能終端的進化論:邊緣AI突破能耗與安全隱私的雙重困局
- 水泥電阻技術深度解析:選型指南與成本對比
- 滑動分壓器的技術解析與選型指南
- 如何通過 LLC 串聯諧振轉換器優化LLC-SRC設計?
- 超聲波清洗暗藏"芯片密碼":二氧化硅顆粒撞擊機理揭秘
- 運動追蹤+沖擊檢測雙感知!意法半導體微型AI傳感器開啟智能設備新維度
- 線繞電阻與金屬氧化物電阻技術對比及選型指南
- 鋁殼電阻技術解析:原理、優勢與產業生態全景
- 厚膜電阻在消費電子電源管理及家電控制中的技術應用與創新
- 從光伏到充電樁,線繞電阻破解新能源設備浪涌防護難題
- GMSL雙模解析:像素模式和隧道模式如何突破傳輸瓶頸
- 線繞電阻與金屬氧化物電阻技術對比及選型指南
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall